Affiner votre recherche
Résultats 1141-1150 de 7,290
Evaluation of the CAMS reanalysis for atmospheric black carbon and carbon monoxide over the north China plain Texte intégral
2022
Ding, Shuo | Liu, Dantong
Black carbon (BC) and carbon monoxide (CO) at different model levels from the Copernicus Atmosphere Monitoring Service (CAMS) reanalysis were comprehensively evaluated against observations performed simultaneously on both surface and mountain sites in winter and summer in the North China Plain for the first time. CAMS could capture the seasonal difference in BC and CO emission on both sites but showed significant and persistent biases. Biases were high on the surface site and low on the mountain site for both seasons, implying the uncertainties in emission inventories used in the CAMS reanalysis which may have more influence near source. Biases were reduced and the correlation coefficient of CAMS BC with observed BC increased when two datasets were compared on a daily basis, which suggests daily or longer time averaged CAMS BC could be more suitable for trend analysis. Although CAMS could generally reproduce the distinct diurnal variation of BC and CO on both sites, the inaccurate representation of the daily evolution of planetary boundary layer (PBL) in model may bring more uncertainties to the concentration biases on surface from midnight to early morning. BC hydrophilic ratio from CAMS displayed large biases compared to observations with no seasonal difference on both sites, which was probably resulted from the initial emission state of BC hygroscopicity for all source types in model. Uncertainties in the removal processes and the simplified aging processes in model could further induce uncertainty in modelling BC hydrophilic ratio in the CAMS. These results could not only be referenced for the improvement on CAMS reanalysis but also facilitate model or trend analysis of BC and CO pollution by utilizing the CAMS reanalysis product from both short- and long-term perspectives, which will be beneficial to both the mitigation and policy-making on primary emissions in China.
Afficher plus [+] Moins [-]Simultaneous removal of COD and NH4+-N from domestic sewage by a single-stage up-flow anaerobic biological filter based on Feammox Texte intégral
2022
Ma, Ding | Wang, Jin | Li, Hao | Che, Jian | Yue, Zhengbo
In recent years, Feammox has made it possible to remove NH₄⁺-N under anaerobic conditions; however, its application in practical wastewater treatment processes has not been extensively reported. In this study, an up-flow anaerobic biological filter based on limonite (Lim-UAF) was developed to facilitate long-term and stable treatment of domestic sewage. Lim-UAF achieved the highest removal efficiency of chemical oxygen demand (COD) and NH₄⁺-N at a hydraulic retention time (HRT) of 24 h (Stage II). Specifically, the COD and NH₄⁺-N content decreased from 240.8 and 30.0 mg/L to about 7.5 and 0.35 mg/L, respectively. To analyze the potential nitrogen removal mechanism, the Lim-UAF was divided into three layers according to the height of the reactor. The results showed that COD and NH₄⁺-N removal had remarkable characteristics in Lim-UAF. More than 55.0% of influent COD was removed in the lower layer (0–30 cm) of Lim-UAF, while 60.2% of NH₄⁺-N was removed in the middle layer (30–60 cm). Microbial community analysis showed that the community structure in the middle and upper layers (60–90 cm) was relatively similar, but quite different from that of the lower layer. Heterotrophic bacteria were dominant in the lower layer, whereas iron-reducing and iron-oxidizing bacteria were enriched in the upper and middle layers. The formation of secondary minerals (siderite and Fe(OH)₃) indicated that the Fe(III)/Fe(II) redox cycle occurred in Lim-UAF, which was triggered by the Feammox and NDFO processes. In summary, limonite was used to develop a single-stage wastewater treatment process for simultaneously removing organic matter and NH₄⁺-N, which has excellent application prospects in domestic sewage treatment.
Afficher plus [+] Moins [-]Simultaneous removal of heterocyclic drugs and total nitrogen from biochemical tailwater by peracetic acid/cobalt-loaded ceramsite-based denitrification biofilter Texte intégral
2022
Li, Tong | Jin, Lili | Zhu, Shanshan | Zhang, Xuxiang | Ren, Hongqiang | Huang, Hui
It is difficult to achieve simultaneous and efficient removal of heterocyclic drugs (HCDs) and total nitrogen (TN) in conventional denitrification biofilter (DNBF). Inspired by the effective degradation of refractory organic matter by cobalt-based advanced oxidation process and the need for in-situ upgrading of DNBF, peracetic acid (PAA)/cobalt-loaded ceramsite-based DNBF system was constructed for the first time to treat biochemical tailwater containing HCDs. Results showed that PAA/Co-DNBF had relatively high removal rates for the four HCDs with the order of CBZ > TMP > SDZ > SMX, and the optimal DNBF was H2 with 150 μg L⁻¹of PAA. Overall, TN and HCDs removal increased by 178%–455% and 2.50%–40.99% respectively. When the influent concentration of NO₃⁻-N, COD and each HCDs of 20 mg/L, 60 mg/L and 20 μg/L, below 15 mg/L of effluent TN and the highest average removal rate of SMX (67.77%) could be achieved, under HRT of 4 h in H2. More even distribution of microbial species and low acute toxicity of effluent were also achieved. More even distribution of microbial species and low acute toxicity of effluent were also achieved. In addition, high extracellular polymeric substance (EPS) content and Gordonia after the addition of PAA contributed to the degradation of HCDs. This study supplied a potentially effective strategy for the treatment of biochemical tailwater containing HCDs and provided new insight into the advance of denitrification technology.
Afficher plus [+] Moins [-]The status of marine debris/litter and plastic pollution in the Caribbean Large Marine Ecosystem (CLME): 1980–2020 Texte intégral
2022
Kanhai, La Daana K. | Asmath, Hamish | Gobin, Judith F.
Plastic pollution is one of several anthropogenic stressors putting pressure on ecosystems of the Caribbean Large Marine Ecosystem (CLME). A ‘Clean Ocean’ is one of the ambitious goals of the United Nations (UN) Decade of Ocean Science for Sustainable Development. If this is to be realized, it is imperative to build upon the work of the previous decades (1980–2020). The objectives of the present study were to assess the state of knowledge about: (i) the distribution, quantification, sources, transport and fate of marine debris/litter and microplastics in the coastal/marine environment of the CLME and, (ii) the effects of plastics on biodiversity. Snapshots, i.e., peer-reviewed studies and multi-year (1991–2020) marine debris data from International Coastal Cleanup (ICC) events, indicated that plastic debris was a persistent issue in multiple ecosystems and environmental compartments of the CLME. Collectively, a suite of approaches (debris categorization, remote sensing, particle tracking) indicated that plastic debris originated from a combination of land and marine-based sources, with the former more significant than the latter. Rivers were identified as an important means of transporting mismanaged land-based waste to the marine environment. Oceanic currents were important to the transport of plastic debris into, within and out of the region. Plastic debris posed a threat to the biodiversity of the CLME, with specific biological, physical, ecological and chemical effects being identified. Existing data can be used to inform interventions to mitigate the leakage of plastic waste to the marine environment. Given the persistent and transboundary nature of the issue, further elucidation of the problem, its causes and effects must be prioritized, while simultaneously harmonizing regional and international approaches.
Afficher plus [+] Moins [-]Hydrocarbon bioremediation on Arctic shorelines: Historic perspective and roadway to the future Texte intégral
2022
Góngora, Esteban | Chen, Ya-Jou | Ellis, Madison | Okshevsky, Mira | Whyte, Lyle
Climate change has become one of the greatest concerns of the past few decades. In particular, global warming is a growing threat to the Canadian high Arctic and other polar regions. By the middle of this century, an increase in the annual mean temperature of 1.8 °C–2.7 °C for the Canadian North is predicted. Rising temperatures lead to a significant decrease of the sea ice area covered in the Northwest Passage. As a consequence, a surge of maritime activity in that region increases the risk of hydrocarbon pollution due to accidental fuel spills. In this review, we focus on bioremediation approaches on Arctic shorelines. We summarize historical experimental spill studies conducted at Svalbard, Baffin Island, and the Kerguelen Archipelago, and review contemporary studies that used modern omics techniques in various environments. We discuss how omics approaches can facilitate our understanding of Arctic shoreline bioremediation and identify promising research areas that should be further explored. We conclude that specific environmental conditions strongly alter bioremediation outcomes in Arctic environments and future studies must therefore focus on correlating these diverse parameters with the efficacy of hydrocarbon biodegradation.
Afficher plus [+] Moins [-]Assessment of background ozone concentrations in China and implications for using region-specific volatile organic compounds emission abatement to mitigate air pollution Texte intégral
2022
Chen, Weihua | Guenther, Alex B. | Shao, Min | Yuan, Bin | Jia, Shiguo | Mao, Jingying | Yan, Fenghua | Krishnan, Padmaja | Wang, Xuemei
Mitigation of ambient ozone (O₃) pollution is a great challenge because it depends heavily on the background O₃ which has been poorly evaluated in many regions, including in China. By establishing the relationship between O₃ and air temperature near the surface, the mean background O₃ mixing ratios in the clean and polluted seasons were determined to be 35–40 and 50–55 ppbv in China during 2013–2019, respectively. Simulations using the chemical transport model (i.e., the Weather Research and Forecasting coupled with Chemistry model, WRF/Chem) suggested that biogenic volatile organic compounds (VOC) emissions were the primary contributor to the increase in the background O₃ in the polluted season (BOP) compared to the background O₃ in the clean season (BOC), ranging from 8 ppbv to 16 ppbv. More importantly, the BOP continuously increased at a rate of 0.6–8.0 ppbv yr⁻¹ during 2013–2019, while the non-BOP stopped increasing after 2017. Consequently, an additional 2%–16% reduction in anthropogenic VOC emissions is required to reverse the current O₃ back to that measured in the period from 2013 to 2017. The results of this study emphasize the importance of the relative contribution of the background O₃ to the observed total O₃ concentration in the design of anthropogenic precursor emission control strategies for the attainment of O₃ standards.
Afficher plus [+] Moins [-]Comprehensive characterization of halogenated flame retardants and organophosphate esters in settled dust from informal e-waste and end-of-life vehicle processing sites in Vietnam: Occurrence, source estimation, and risk assessment Texte intégral
2022
Hoang, Anh Quoc | Karyu, Ryogo | Tue, Nguyen Minh | Goto, Akitoshi | Tuyen, Le Huu | Matsukami, Hidenori | Suzuki, Go | Takahashi, Shin | Viet, Pham Hung | Kunisue, Tatsuya
Information about the co-occurrence of halogenated flame retardants (HFRs) and organophosphate esters (OPEs) in the environment of informal waste processing areas is still limited, especially in emerging and developing countries. In this study, OPEs and HFRs including polybrominated diphenyl ethers (PBDEs), novel brominated flame retardants (NBFRs), and chlorinated flame retardants (CFRs) were determined in settled dust from Vietnamese e-waste recycling (WR) and vehicle processing (VP) workshops. Pollutant concentrations decreased in the order: OPEs (median 1500; range 230–410,000 ng/g) ≈ PBDEs (1200; 58–250,000) > NBFRs (140; not detected – 250,000) > CFRs (13; 0.39–2200). HFR and OPE levels in the WR workshops for e-waste and obsolete plastic were significantly higher than in the VP workshops. Decabromodiphenyl ether and decabromodiphenyl ethane are major HFRs, accounting for 60 ± 26% and 25 ± 29% of total HFRs, respectively. Triphenyl phosphate, tris(2-chloroisopropyl) phosphate, and tris(1,3-dichloroisopropyl) phosphate dominated the OPE profiles, accounting for 30 ± 25%, 25 ± 16%, and 24 ± 18% of total OPEs, respectively. The OPE profiles differed between WR and VP dust samples, implying different usage patterns of these substances in polymer materials for electric/electronic appliance and automotive industries. Human health risk related to dust-bound HFRs and OPEs in the study areas was low.
Afficher plus [+] Moins [-]Using food waste to cultivate safe, good-quality Sabah (giant hybrid) grouper: Dioxins and dioxin-like polychlorinated biphenyls Texte intégral
2022
Man, Yu Bon | Zhang, Feng | Mo, Wing Yin | Chow, Ka Lai | Wong, Ming Hung
Dioxins and dioxin-like polychlorinated biphenyls (dl-PCBs) in fish fillet counteract the health benefits of fish products. In this study, food waste was used as a protein alternative to replacing fishmeal commonly used in the commercial fish feed, aiming to cultivate Sabah grouper with acceptable levels of dioxins and dl-PCBs. The concentrations of dioxins and dl-PCBs, as well as the fish growth performance, were compared between the fish groups fed with food waste-based feed (FWBF) and commercial feed (Nanyu®, control). The results showed that the concentrations of polychlorinated dibenzo-p-dioxins (PCDDs) (1.22 pg/g dry weight (d.w.)) and non-ortho-dl-PCBs (13.0 pg/g d.w.) were significantly lower (p < 0.05) in the FWBF than in the control feed (commercial feed) (PCDDs: 2.35 pg/g d.w.; non-ortho-dl-PCBs: 27.2 pg/g d.w.). The growth performance of the fish group fed with the FWBF was comparable to that fed with the control feed. There were no significant differences between the WHO₂₀₀₅-TEQ values of different fish fillets (1.00, 1.11, and 1.10 pg WHO₂₀₀₅-TEQ/g d.w. for FWBF group, control feed group, and local market fish, respectively). Based on the guidelines provided by European Food Safety Authority (ESFA) and U.S. Environmental Protection Agency (USEPA), the fish fed with the FWBF were safe for human consumption (hazard index values: 0.284–0.522; cancer risk range: 2.59–2.97 × 10⁻⁵). The findings of this study suggest that food waste could serve as an alternative protein source for cultivating Sabah grouper with acceptable levels of dioxins and dl-PCBs.
Afficher plus [+] Moins [-]Biodegradation of 4-nitroaniline by novel isolate Bacillus sp. strain AVPP64 in the presence of pesticides Texte intégral
2022
Silambarasan, Sivagnanam | Cornejo, Pablo | Vangnai, Alisa S.
In this study, Bacillus sp. strain AVPP64 was isolated from diuron-contaminated soil. It showed 4-nitroaniline (4-NA) degradation, pesticide tolerance, and self-nutrient integration via nitrogen (N)-fixation and phosphate (P)-solubilization. The rate constant (k) and half-life period (t₁/₂) of 4-NA degradation in the aqueous medium inoculated with strain AVPP64 were observed to be 0.445 d⁻¹ and 1.55 d, respectively. Nevertheless, in the presence of chlorpyrifos, profenofos, atrazine and diuron pesticides, strain AVPP64 degraded 4-NA with t₁/₂ values of 2.55 d, 2.26 d, 2.31 d and 3.54 d, respectively. The strain AVPP64 fixed 140 μg mL⁻¹ of N and solubilized 103 μg mL⁻¹ of P during the presence of 4-NA. In addition, strain AVPP64 produced significant amounts of plant growth-promoting metabolites like indole 3-acetic acid, siderophores, exo-polysaccharides and ammonia. In the presence of 4-NA and various pesticides, strain AVPP64 greatly increased the growth and biomass of Vigna radiata and Crotalaria juncea plants. These results revealed that Bacillus sp. strain AVPP64 can be used as an inoculum for bioremediation of 4-NA contaminated soil and sustainable crop production even when pesticides are present.
Afficher plus [+] Moins [-]Watershed urbanization enhances the enrichment of pathogenic bacteria and antibiotic resistance genes on microplastics in the water environment Texte intégral
2022
Li, Hu | Luo, Qiuping | Zhao, Sha | Zhao, Peiqiang | Yang, Xiaoru | Huang, Qiansheng | Su, Jianqiang
Microplastics (MPs) serve as vectors for microorganisms and antibiotic resistance genes (ARGs) and contribute to the spread of pathogenic bacteria and ARGs across various environments. Patterns of microbial communities and ARGs in the biofilm on the surface of MPs, also termed as plastisphere, have become an issue of global concern. Although antibiotic resistome in the plastisphere has been detected, how watershed urbanization affects patterns of potential pathogens and ARGs in the microplastic biofilms is still unclear. Here, we compared the bacterial communities, the interaction between bacterial taxa, pathogenic bacteria, and ARGs between the plastisphere and their surrounding water, and revealed the extensive influence of urbanization on them. Our results showed that bacterial communities and interactions in the plastisphere differed from those in their surrounding water. Microplastics selectively enriched Bacteroidetes from water. In non-urbanized area, the abundance of Oxyphotobacteria was significantly (p < 0.05) higher in plastisphere than that in water, while α-Proteobacteria was significantly (p < 0.05) higher in plastisphere than those in water of urbanized area. Pathogenic bacteria, ARGs, and mobile genetic elements (MGEs) were significantly (p < 0.05) higher in the urbanized area than those in non-urbanized area. MPs selectively enriched ARG-carrying potential pathogens, i.e., Klebsiella pneumoniae and Enterobacter cloacae, and exhibited a distinct effect on the relative abundance of ARG and pathogens in water with different urbanization levels. We further found ARGs were significantly correlated to MGEs and pathogenic bacteria. These results suggested that MPs would promote the dissemination of ARGs among microbes including pathogenic bacteria, and urbanization would affect the impact of MPs on microbes, pathogens, and ARGs in water. A high level of urbanization could enhance the enrichment of pathogens and ARGs by MPs in aquatic systems and increase microbial risk in aquatic environments. Our findings highlighted the necessity of controlling the spread of ARGs among pathogens and the usage of plastic products in ecosystems of urban areas.
Afficher plus [+] Moins [-]