Affiner votre recherche
Résultats 1161-1170 de 2,513
Electrolysis Applied For Simulated Textile Effluents Degradation Containing Acid Red 151 and Acid Blue 40 Texte intégral
2014
de Sousa, Mariana Lopes | Bidoia, Ederio Dino
Textile industry is responsible for a large amount of polluted water released daily, mainly due to the dyes used. This article has aimed to study and improve methodologies for degrading textile effluents containing the dyes Acid Red 151 and Acid Blue 40 using an electrolytic reactor. Different solutions were prepared for the experiments in the electrolytic reactor with a 70 % TiO₂/30 % RuO₂anode. The textile effluents underwent 0 (control), 3, and 30 min treatment intervals. A suspension of Saccharomyces cerevisiae cells was used for toxicity tests and performed at the same day that samples were collected. The same test was applied to the samples after 15 days resting in order to verify changes in toxicity. The electrolytic treatment successfully removed the color in all effluents. However, the process efficiency varies according to the dye used and the experimental conditions, such as current and NaCl concentration. Also, it was observed that treatments longer than 30 min are very toxic to S. cerevisiae cells because of the high concentration of Cl₂.
Afficher plus [+] Moins [-]Irrigating Onions and Potatoes with Chromium and Nickel: Its Effects on Catalase and Peroxidase Activities and the Cross-Contamination of Plants Texte intégral
2014
Stasinos, Sotiris | Kostakis, Marios | Thomaidis, Nikolaos | Zabetakis, Ioannis
The scope of this study was to investigate the uptake of chromium and nickel by onions (Allium cepa) and potatoes (Solanum tuberosum) and their impact on plant enzymes catalase (CAT, E.C. 1.11.1.6) and peroxidase (POX, E.C. 1.11.1.7). A greenhouse experiment was conducted, simulating the irrigating conditions existing in the two biggest tuber-producing regions of Greece (Asopos and Messapia). Plants were cultivated for 4 months in six irrigation lines, each one supplied by an aqueous solution, containing levels of Cr(VI) and Ni(II) ranging from 0 μg/L (control) to 1,000 μg/L. Significant statistical correlations were observed between (i) the levels of heavy metals in plants, (ii) the levels of heavy metals in plants and in irrigation water, and (iii) the levels of heavy metals and the enzymatic activities in plants. The existing EU legislation has no legal limits for Ni and Cr in food, and the nutritional implications of this study are discussed.
Afficher plus [+] Moins [-]Enhancing the Reliability of Laboratory Phosphorus Filter Tests: Effect of Influent Properties and Interpretation of Effluent Parameters Texte intégral
2014
Herrmann, Inga | Jourak, Amir | Hedström, Annelie | Lundström, Staffan | Viklander, M.
Filtration can be a convenient technique for removing phosphorus (P) at on-site wastewater treatment facilities to recycle this non-renewable element. When testing potentially suitable materials for these filters, the properties of the influent and the method used to analyse measured effluent concentrations both affect the P binding capacity determined in filter tests and therewith filter longevity predictions. At present, there is a lack of robust methods for material investigation and filter test interpretation. This study was conducted to investigate the effect of inflow PO₄–P concentrations (concentration) and hydraulic surface load (load) on P binding capacity and to analyse possible interpretations of laboratory filter tests. A 2²factorial experiment with replicates was performed on the calcium-based filter material Filtra P. The investigated concentrations ranged from 12 to 50 mg L⁻¹and loads from 419 to 1,023 L m⁻² day⁻¹. P binding capacity (calculated by mass balance including data until PO₄–P breakthrough point) was negatively affected by concentration and positively affected by load, with the effect of concentration being slightly greater. Depending on the factors' settings and on the method of evaluation (i.e. analysing all pre-saturation data or considering only pre-breakthrough results), the total measured P binding capacity varied between 2.2 and 9.0 g kg⁻¹. The part of the breakthrough curve between the breakthrough point and saturation contributed significantly to the measured P binding capacity, and it took about three times longer for the filters to become saturated than to reach breakthrough. Furthermore, a considerable amount of P that had reacted with the filter material was washed out of the filters as particle-bound P. This indicates that it is important to determine both the PO₄–P and the particle-bound P phases in the filter effluent.
Afficher plus [+] Moins [-]The Effects of Plastic Pollution on Aquatic Wildlife: Current Situations and Future Solutions Texte intégral
2014
Sigler, Michelle
The majority of consumer products used today are comprised of some form of plastic. Worldwide, almost 280 million t of plastic materials are produced annually, much of which ends up in landfills or the oceans (Shaw and Sahni Journal of Mechanical and Civil Engineering 46–48, 2014). While plastics are lightweight, inexpensive, and durable, these same qualities can make them very harmful to wildlife, especially once they become waterborne. Once seaborne, plastics are most likely found circulating in one of five major ocean gyres: two in the Pacific, one in the Indian, and two in the Atlantic. These ocean garbage patches are not solid islands of plastic; instead, they are a turbid mix of plastics (Kostigen 2008; Livingeco 2011). Recent research conducted on the surfaces of the Great Lakes has identified similar problems (Erikson et al. Marine Pollution Bulletin, 77(1), 177–182, 2013). A growing concern is that once plastics reach the wild, they may cause entanglement, death from ingestion, and carry invasive species. Several cutting edge technologies have been piloted to monitor or gather the plastics already in our environments and convert them back into oil with hopes to reduce the damage plastics are causing to our ecosystems.
Afficher plus [+] Moins [-]Tools for Modeling of Stormwater Management and Economics of Green Infrastructure Practices: a Review Texte intégral
2014
Jayasooriya, V. M. | Ng, A. W. M.
Green Infrastructure (GI) practices have been identified as a sustainable method of managing stormwater over the years. Due to the increasing popularity of GI as an integrated urban water management strategy, most of the current catchment modeling tools incorporate these practices, as built-in modules. GI practices are also viewed as economically viable methods of stormwater management when compared to conventional approaches. Therefore, cost-benefit analysis or economics of GI are also emerging as obligatory components of modeling tools. Since these tools are regularly upgraded with latest advancements in the field, an assessment of tools for modeling stormwater management and economic aspects of GI practices is vital to developing them into more sophisticated tools. This review has undergone a three-phase process starting with 20 identified modeling tools available in the literature followed by a detailed review of a selection of ten most recent and popular modeling tools, based on their accessibility. The last phase of the review process is a comparison of the ten modeling tools along with their different attributes. The major aim of this review is to provide readers with the fundamental knowledge of different modeling tools currently available in the field, which will assist them with screening for a model, according to their requirements from the number of tools available. A secondary aim is to provide future research directions on developing more comprehensive tools for GI modeling, and recommendations have been presented.
Afficher plus [+] Moins [-]Temperature enhanced effects of chlorine exposure on the health status of the sentinel organism Mytilus galloprovincialis Texte intégral
2014
López-Galindo, Cristina | Ruiz-Jarabo, Ignacio | Rubio, Daniel | Nebot, Enrique | Solé, Montserrat | Mancera, Juan M.
It now is widely recognised that the global temperature is rising, a phenomenon which could alter the effects of pollution on wildlife. In order to assess the role of temperature and exposure to chlorine due to cooling water discharges, a battery of metabolic, oxidative stress and histological parameters were evaluated in Mytilus galloprovincialis after 15 and 30 days at 15 °C and at two increased temperatures (+5 and +10 °C). Diverse gill pathologies such as haemolymphatic sinus dilatation, an increased number of mucocytes and granulocytes as well as a lower number of cilia were observed after 30 days exposure at higher temperatures. Protein, amino acid, triglyceride and fatty acid levels decreased when the temperature increased, as a consequence of higher energetic demand. Similarly, acetylcholinesterase, catalase and glutathione S-transferase activities showed an inhibition at higher temperatures, although gill lipid peroxidation levels remained unaffected. Our results suggest that increased temperatures induce deterioration in the health status of the mussels and in their defensive capacity against a polluted environment.
Afficher plus [+] Moins [-]Predicting the Concentration of Total Mercury in Mineral Horizons of Forest Soils Varying in Organic Matter and Mineral Fine Fraction Content Texte intégral
2014
Gruba, Piotr | Błońska, Ewa | Lasota, Jarosław
The level of mercury (Hg) concentration in soils can be estimated using certain predictors such as the content of organic carbon (Cₒᵣg) or the fine fractions (FFs) such as silt and clay. This study was focused on the potential use of Cₒᵣgand FF contents as the predictors of Hg concentration at the spatial meso-scale in forest soils derived from Triassic sandstones and claystones, Quaternary sands derived from weathering sandstones and Quaternary sands of fluvioglacial origin. To understand the importance of Cₒᵣgand FF contents for Hg retention in mineral soil, the allocation of Hg in physically separated fractions of soil samples was also tested. The experiment was designed over a regular 200 × 200-m grid, where 275 plots were established. The results implied that the concentration of total Hg in mineral soil may vary by several orders of magnitude because of the natural variation in Cₒᵣgcontent. The model where the Cₒᵣgcontent was the only variable explained 44 % of Hg concentration variability in soil, and other significantly correlated variables were the FF content and the C/N ratio. Detailed analysis revealed that the particulate organic matter fraction accumulated more Hg per unit of Cₒᵣgthan in the organic matter associated with FF. The content of Cₒᵣg, FF and C/N ratio allowed, for the local soils, a satisfactory prediction of the spatial distribution and the magnitude of total Hg concentration in soils.
Afficher plus [+] Moins [-]Response of the Archaeal Community to Simulated Petroleum Hydrocarbon Contamination in Marine and Hypersaline Ecosystems Texte intégral
2014
Jurelevicius, Diogo | de Almeida Couto, Camila Rattes | Alvarez, Vanessa Marques | Vollú, Renata Estebanez | de Almeida Dias, Felipe | Seldin, Lucy
Petroleum hydrocarbons are among the most important contaminants in aquatic ecosystems, but the effects of different petroleum components on the archaeal communities in these environments are still poorly investigated. Therefore, the effects of representative alkanes, polycyclic aromatic hydrocarbons and crude oil on archaeal communities from marine (Massambaba Beach) and hypersaline waters (Vermelha Lagoon) from the Massambaba Environmental Protection Area, Rio de Janeiro, Brazil, were examined in this study. Hydrocarbon contamination was simulated in vitro, and the resulting microcosms were temporally analyzed (4, 12 and 32 days after contamination) using molecular methods. DNA and RNA extractions were followed by polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) analyses and by the further molecular identification of selected DGGE bands. Archaeal communities could not be detected in the marine microcosms after contamination with the different hydrocarbons. In contrast, they were detected by DNA- and RNA-based methods in hypersaline water. Dendrogram analyses of PCR-DGGE showed that the archaeal communities in the hypersaline water-derived microcosms selected for by the addition of heptadecane, naphthalene or crude oil differed from the natural ones observed before the hydrocarbon contaminations. Principal coordinate analysis of the DGGE patterns showed an important effect of incubation time on the archaeal communities. A total of 103 DGGE bands were identified, and phylogenetic analysis showed that 84.4 % and 15.5 % of these sequences were associated with the Euryarchaeota and Crenarchaeota groups, respectively. Most of the sequences obtained were related to uncultivated archaea. Using redundancy analysis, the response of archaeal communities to the type of hydrocarbon contamination used could also be observed in the hypersaline water-derived microcosms.
Afficher plus [+] Moins [-]Physicochemical Behavior of Tetracycline and 17α-Ethinylestradiol with Wastewater Sludge-Derived Humic Substances Texte intégral
2014
Tenenbaum, Idan | Chefetz, Benny | Avisar, Dror
Sorption–desorption behavior of the antibiotic tetracycline (TET) and the synthetic estrogen hormone 17α-ethinylestradiol (EE2) with wastewater sludge and sludge-derived humic substances [humic acid (HA) and humin] was investigated. From acidic functional group capacity and elemental analyses, HA had higher polarity, aromaticity, and acidity than humin; humin contained aliphatic chains with high mineral content. The different physicochemical properties of the pharmaceuticals and sludge components yielded different kinds of sorption–desorption interactions. Partitioning coefficients (Kd) of TET to sludge were higher (1,552 ± 41–4,667 ± 41 L/kg) than EE2 (534 ± 52–609 ± 47 L/kg). TET sorption was highly pH-dependent and maximal at pH 9. Ca²⁺ions enhanced sorption, emphasizing the role of polyvalent metal ions in forming TET–sludge complexes. Humin was the dominant component for TET sorption due to its high inorganic matter content. In contrast, EE2 sorption was independent of solution pH, forming mostly hydrophobic interactions with sludge organic matter. EE2 had a high affinity for HA due to its chemical structure. Desorption of the two pharmaceuticals differed as well. The amount of desorbed TET (18.7 ± 1.3–29.8 ± 2 %) was lower than that of EE2 (60.6 ± 3–62.3 ± 2 %), and the hysteresis index was higher for TET than EE2. While TET desorption tended to be delayed in the solid matrix, EE2 desorbed easily and in accordance with the aqueous equilibrium concentration. The conclusions emphasize the need for further research into frequently used pharmaceuticals with different physicochemical properties and the recognition of sludge application as an important source of distribution for these contaminants in the environment.
Afficher plus [+] Moins [-]Predominance of Dehalococcoides in the presence of different sulfate concentrations Texte intégral
2014
Panagiotakis, Iraklis | Mamais, Daniel | Pantazidou, Marina | Rossetti, Simona | Aulenta, Federico | Tandoi, Valter
This is the first study that investigates in detail the effect of different sulfate concentrations on trichloroethene-dechlorinating microbial communities, both in terms of dechlorinating performance and microbial composition. The study used a series of Dehalococcoides-containing trichloroethene-dechlorinating microbial communities, which operated for more than 800 days in the presence of different sulfate concentrations and limiting-electron donor conditions. This study proves the ability of Dehalococcoides spp., the only genus able to completely dechlorinate trichloroethene, to predominate in mixed anaerobic microbial communities regardless of the magnitude of sulfate concentration, even under limiting-electron donor conditions. Although other microorganisms, such as the Sulfurospirillum spp. bacteria and members of the sulfate-reducing bacteria group were able to thrive, they were not able to predominate in such a competitive environment. However, this picture was not reflected in reductive dechlorination, which demonstrated a much better performance under methanogenic conditions or in the presence of low sulfate concentration (30 mg/l) than in the presence of higher sulfate concentrations (>400 mg/l). Therefore, different species of Dehalococcoides or other dechlorinating bacteria, which are not able to thrive in the presence of high sulfate concentrations (>400 mg/l), are possibly responsible for the higher dechlorination efficiency that was observed under methanogenic conditions.
Afficher plus [+] Moins [-]