Affiner votre recherche
Résultats 1161-1170 de 6,535
Influence of Microcystis sp. and freshwater algae on pH: Changes in their growth associated with sediment
2020
Acuña-Alonso, Carolina | Lorenzo, Olalla | Álvarez, Xana | Cancela, Ángeles | Valero, Enrique | Sanchez, Angel
Samples from two reservoirs with eutrophication problems, located in Pontevedra and Ourense (Northwestern Spain), were cultured, along with a third crop from a reservoir with no problems detected in Ourense (Northwestern Spain). The samples were grown under the same conditions (with an average temperature of 21 ± 2 °C, and a 3000 lux light intensity) in triplicate, and their growth, absorbance and pH were studied. High correlation values were obtained for pH and cellular growth (R² ≥ 95%). The water from Salas showed the greatest microalgal growth (0.15 × 10⁶ cells/ml to 31.70 × 10⁶ cells/ml of Microcystis sp. for the last day of culturing) and the greatest increase in pH (5.72–9.02). In all the cultures studied here, the main species that reproduced was Microcystis sp., which can produce neurotoxins and hepatotoxins. In addition, water samples were cultured with sediments of their own reservoir and with others to observe their evolution. The sediments studied in this case were rich in biotites, which can lead phosphate to be a limiting factor for phytoplankton due to the formation and sedimentation of insoluble salts of ferric phosphate. In crops grown with sediments from the Salas reservoir, actinobacteria developed which can inhibit microalgal growth. The study of the growth of cyanobacteria and possible methods of inhibiting them directly concerns the quality of water and its ecosystems, avoiding pollution and impact on ecosystems.
Afficher plus [+] Moins [-]Evaluation of air quality in Sunway City, Selangor, Malaysia from a mobile monitoring campaign using air pollution micro-sensors
2020
Lee, Chia Chun | Tran, Manh-Vu | Choo, Cheng Wai | Tan, Chee Pin | Chiew, Yeong Shiong
Due to the increase of the human population and the rapid industrial growth in the past few decades, air quality monitoring is essential to assess the pollutant levels of an area. However, monitoring air quality in a high-density area like Sunway City, Selangor, Malaysia is challenging due to the limitation of the local monitoring network. To establish a comprehensive data for air pollution in Sunway City, a mobile monitoring campaign was employed around the city area with a duration of approximately 6 months, from September 2018 to March 2019. Measurements of air pollutants such as carbon dioxide (CO₂) and nitrogen dioxide (NO₂) were performed by using mobile air pollution sensors facilitated with a GPS device. In order to acquire a more in-depth understanding on traffic-related air pollution, the measurement period was divided into two different time blocks, which were morning hours (8 a.m.–12 p.m.) and afternoon hours (3 p.m.–7 p.m.). The data set was analysed by splitting Sunway City into different zones and routes to differentiate the conditions of each region. Meteorological variables such as ambient temperature, relative humidity, and wind speed were studied in line with the pollutant concentrations. The air quality in Sunway City was then compared with various air quality standards such as Malaysian Air Quality Standards and World Health Organisation (WHO) guidelines to understand the risk of exposure to air pollution by the residence in Sunway City.
Afficher plus [+] Moins [-]Organic contaminants formed during fire extinguishing using different firefighting methods assessed by nontarget analysis
2020
Dubocq, Florian | Bjurlid, Filip | Ydstål, Danielle | Titaley, Ivan A. | Reiner, Eric | Wang, Thanh | Almirall, Xavier Ortiz | Kärrman, Anna
During a fire event, potentially hazardous chemicals are formed from the combustion of burning materials and are released to the surrounding environment, both via gas and soot particles. The aim of this investigation was to study if firefighting techniques influence the emission of chemicals in gas phase and soot particles. Five full-scale fire tests were extinguished using four different firefighting techniques. A nontarget chemical analysis approach showed that important contaminants in gas and soot separating the different tests were brominated flame retardants (BFRs), organophosphate flame retardants (OPFR), polycyclic aromatic hydrocarbons (PAHs) and linear hydrocarbons. Reproducibility was evaluated by a field replicate test and it was determined that the temperature curve during the event had a bigger impact on the released chemicals than the firefighting technique used. However, despite fire intensity being a confounding factor, multivariate statistics concluded that water mist with additive resulted in less BFR emissions compared to foam extinguishing. The analysis also showed that the conventional spray nozzle method released more PAHs compared with the water mist method. The comprehensive chemical analysis of gas and soot released during fire events was able to show that different firefighting techniques influenced the release of chemicals.
Afficher plus [+] Moins [-]Cyanotoxin impact on microbial-mediated nitrogen transformations at the interface of sediment-water column in surface water bodies
2020
Li, Hanyan | Hollstein, Marielle | Podder, Aditi | Gupta, Vedansh | Barber, Michael | Goel, Ramesh
Harmful cyanobacterial blooms produce lethal toxins in many aquatic ecosystems experiencing eutrophication. This manuscript presents results on the effects of cyanotoxins on the aerobic microbial communities residing at the interface of sediments and water columns with the ammonia-oxidizing bacteria (AOB) as the model microbial community. Microcystin-LR (MC-LR), a heavily researched cyanotoxin variant, was used as the model cyanotoxin. To measure cyanotoxin influence on the activity of nitrifying microbial communities, an enriched culture of AOBs collected from an ongoing partial nitrification-nitritation reactor was examined for its exposure to 1, 5 and 10 μg/L of MC-LR. The nitritation kinetics experiment demonstrated MC-LR’s ability at 1, 5, and 10 μg/L concentrations to prevent ammonium oxidation with statistically significant differences in nitritation rates between the blanks and spiked samples (One-way ANOVA, p < 0.05). Significantly decreased dissolved oxygen (DO) consumption during oxygen update batch tests demonstrated toxin’s influence on AOB’s oxidizing capabilities when exposed to even lower concentrations of 0.75, 0.5, and 0.25 μg/L of MC-LR in a separate set of experiments. Based on competitive kinetics, the MC-LR inhibition coefficient-the concentration needed to produce half-maximum inhibition of the mixed community AOBs was determined to be 0.083 μg/L. The stress tests proved the recovery of nitritation to some extent at lower MC-LR concentrations (1 and 5 μg/L), but significant irreversible inhibition was recorded when the AOB population was exposed to 10 μg/L MC-LR. The comparisons of amoA gene expressions corresponded well with nitrifying kinetics. All concentrations of MC-LR spiking were determined to produce a discernible impact on the AOB nitritation rate by either destroying the bacterial cell or immediately inhibiting the amoA gene expression.
Afficher plus [+] Moins [-]Responses of the growth and physiological characteristics of Myriophyllum aquaticum to coexisting tetracyclines and copper in constructed wetland microcosms
2020
Guo, Xuan | Liu, Mingming | Zhong, Hua | Li, Peng | Zhang, Chengjun | Wei, Dan | Zhao, Tongke
Antibiotic and heavy metal pollution of aquatic environments are issues of serious concern, and the macrophyte Myriophyllum aquaticum may provide a viable solution for the removal of these contaminants. However, the toxic effects of coexisting tetracyclines (TCs) and Cu(II) on this plant species are currently unclear. In the present study, we constructed wetland microcosms planted with M. aquaticum and spiked these with three TCs (tetracycline, oxytetracycline, and chlortetracycline) and Cu(II) at concentrations ranging from 100 to 10,000 μg/L to investigate how Cu(II) influences the growth and tolerance responses of plants to TCs. After 12 weeks, we found that TCs had accumulated in the plants, and that plant growth and characteristics were significantly affected by the levels of both TCs and Cu(II). While low Cu(II) levels had a synergistic effect on the accumulation of TCs, high levels were observed to reduce accumulation. However, low levels of TCs and Cu(II) had a hormesis effect on plant growth, with plant biomass and leaf chlorophyll content decreasing and the malondialdehyde content and activities of antioxidant enzymes gradually increasing with an increase in TC dosage. The coexistence of low levels of Cu(II) was, however, found to alleviate these adverse effects. Principal component analysis revealed a close relationship among plant biomass, chlorophyll content, malondialdehyde content, and antioxidant enzyme activities. Considering that the Cu/TC ratio was shown to markedly affect M. aquaticum growth, the respective proportions of these pollutants should be taken into consideration in the future design of constructed wetlands.
Afficher plus [+] Moins [-]Comparison of the suitability of plant species for greenbelt construction based on particulate matter capture capacity, air pollution tolerance index, and antioxidant system
2020
Zhang, Weiyuan | Zhang, Yuzhen | Gong, Jirui | Yang, Bo | Zhang, Zihe | Wang, Biao | Zhu, Chenchen | Shi, Jiayu | Yue, Kexin
Particulate matter (PM) pollution is an urgent urban environmental problem. However, plants can mitigate this pollution by filtering the air. Combining the PM capture capacity with the air pollution tolerance could be better evaluate the suitability of greenbelt plants. We selected nine dominant roadside plants growing at two sites in Beijing, and compared their PM capture capacity, morphological characteristics, biochemical characteristics, and air pollution tolerance index (APTI). Sophora japonica had the highest PM capture capacity (362.98 μg cm⁻²), and its wax layers could trap large amounts of PM₂.₅; this high efficiency is important for successful phytoremediation. Sophora japonica. Sabina chinensis, Ulmus pumila, and Euonymus japonicus also showed relatively high PM capture capacity. This is due to their complex cuticular wax layers, short petioles, rough surfaces, high stomata density, and dense canopy structures which reduce the possibility of resuspension of captured PM. Amount of PM captured per unit leaf area had a significant positive effect on the degree of membrane lipid peroxidation, indicating that species with high PM capture capacity suffered higher oxidative stresses. Air pollution showed the strongest negative effect size on chlorophyll contents of E. japonicas. While, S. japonica, S. chinensis, and U. pumila could prevent chlorophyll content decline under severe oxidative stress. Sophora japonica also had the highest APTI at both sites, indicating this species had the greatest tolerance to air pollution. Our findings suggest that S. japonica would be the most suitable species for greenbelt construction in Beijing, followed by S. chinensis, E. japonicus, and U. pumila.
Afficher plus [+] Moins [-]Characterisation of hyper tolerant Bacillus firmus L-148 for arsenic oxidation
2020
Bagade, Aditi | Nandre, Vinod | Paul, Dhiraj | Patil, Yugendra | Sharma, Nisha | Giri, Ashok | Kodam, Kisan
Groundwater arsenic pollution causes millions of deaths worldwide. Long term natural and anthropogenic activities have increased arsenic levels in groundwater causing higher threats of arsenic exposure. Arsenic hyper-tolerant Firmicute Bacillus firmus L-148 was isolated from arsenic limiting Lonar lake soil, which tolerated more than 3 M arsenic and could oxidize 75 mM arsenite [As(III)] in 14 days. It oxidized As(III) in presence of heavy metals and had unusual pH optima at 9.2. B. firmus L-148 was studied at the biochemical, protein, genomic and transcript level for understanding its arsenic oxidizing machinery. The proteomic and transcript analysis exhibited the presence of ars and aio operon and supported the inducible nature of ars operon. Robust, hyper-tolerant, fast As(III) oxidizing, least nutrient requiring and multi-metal resistance qualities of the strain were used in microcosm studies for bioremediation. Artificial groundwater mimicking microcosm with 75 mM As(III) was developed. Modulation of carbon source, iron and multi metals affected growth and As(III) oxidation rate. The As(III) oxidation was recorded to be 77% in 15 days in presence of sodium acetate and Fe ions. This microcosm study can be explored for bioremediation of arsenic contaminated water and followed by precipitation using other methods.
Afficher plus [+] Moins [-]Wetland soil microplastics are negatively related to vegetation cover and stem density
2020
Helcoski, Ryan | Yonkos, Lance T. | Sanchez, Alterra | Baldwin, Andrew H.
Microplastics are a complex group of ubiquitous environmental contaminants of emerging concern. These particles degrade slowly, release plasticizers, and can be transferred between trophic levels. In aquatic systems, they have been identified suspended in the water column, along shorelines, and within sediment. However, the abundance and distribution of microplastics in vegetated wetlands, which are transitional ecosystems between terrestrial and aquatic environments, are poorly understood. Here we describe the spatial distribution of soil microplastics in habitats of varying vegetation density in an urban tidal wetland. Samples were wet-sieved, organic matter was oxidized using hydrogen peroxide, and microplastics separated under a dissecting microscope, counted, and weighed. A fraction (n = 175) were analyzed via FTIR for validation. Positive microplastics identification was 81%–93%. Dominant polymers were polystyrene (29%) and polyethylene and synthetic rubber (both 8%). Average microplastic number to a 5-cm depth (23,200 ± 2,500 m−2 or 1,270 ± 150 kg−1) varied between habitat types, where mudflat, channel edge, and drift line habitats all had significantly more total microplastics than the interior of dense stands of vegetation, suggesting that emergent wetland plants are a highly effective filter of microplastics. Microfibers were about eight times as abundant as microfragments, and fibers and fragments differed in their distribution patterns, with microfibers most abundant in vegetation-free mudflats and microfragments in vegetated channel edges. Our results demonstrate that vegetated wetlands are important locations for microplastic accumulation and that wetland vegetation and hydrodynamics affect spatial distribution of microplastics between habitats.
Afficher plus [+] Moins [-]Mitigation of zinc toxicity through differential strategies in two species of the cyanobacterium Anabaena isolated from zinc polluted paddy field
2020
Chakraborty, Sindhunath | Mishra, Arun K.
The present study describes the physiological and biochemical mechanisms of zinc tolerance in two heterocytous cyanobacteria i.e. Anabaena doliolum and Anabaena oryzae, treated with their respective LC₅₀ concentrations of zinc (3 and 4.5 mg L⁻¹) for eight days. The feedbacks were examined in terms of growth, metabolism, zinc exclusion, zinc accumulation, oxidative stress, antioxidants and metallothionein contents. Although the growth and metabolic activities were reduced in both the cyanobacterium, maximum adversity was noticed in A. doliolum. The higher order of abnormalities in A. doliolum was attributed to excessive accumulation of zinc and enhanced reactive oxygen species (ROS) production. However, the comparatively higher growth and metabolic activities of A. oryzae were ascribed to the lower accumulation of zinc as a result of released polysaccharides mediated zinc exclusion, synthesis of zinc chelating metallothioneins and subsequent less production of ROS. The oxidative stress and macromolecular damages were prominent in both the cyanobacterium but the condition was much harsher in A. doliolum which may be explained by its comparatively low antioxidative enzyme activities (SOD, APX and GR) and smaller amount of ascorbate-glutathione-tocopherol contents than that of A. oryzae. However, sustenance of 50% growth by A. doliolum under zinc stress despite severe cellular damages was attributed to the enhanced synthesis of phenolics, flavonoids, and proline. Thus, differential zinc tolerance in A. doliolum and A. oryzae is possibly the outcome of their distinct mitigation strategies. Although the two test organisms followed pseudo second order kinetics model during zinc biosorption yet they exhibited differential zinc biosorption capacity. The cyanobacterium A. oryzae was found to be more efficient in removing zinc as compared to A. doliolum and this efficiency makes A. oryzae a promising candidate for the phycoremediation of zinc polluted environments.
Afficher plus [+] Moins [-]n-Butylparaben exposure through gestation and lactation impairs spermatogenesis and steroidogenesis causing reduced fertility in the F1 generation male rats
2020
Maske, Priyanka | Dighe, Vikas | Mote, Chandrashekhar | Vanage, Geeta
Parabens are class of preservatives used in vast majority of commercial products, and a potential Endocrine Disrupting Chemical (EDC). The present study was undertaken to delineate the effects of n-butylparaben on F1 male progeny exposed maternally through gestation and lactation via subcutaneous route. The F0 dams were given subcutaneous injections of n-butylparaben from gestation day (GD) 6 to postnatal day (PND) 21 with doses of 10, 100, 1000 mg/kg Bw/day in corn oil. The F1 male rats were monitored for pubertal development and sexual maturation; these were sacrificed on PND 30, 45 and 75. On PND 75, these F1 male rats were subjected for fertility assessment with unexposed female rats.A delayed testicular descent at 100 and 1000 mg/kg Bw dose and delayed preputial separation at 10 mg/kg Bw dose was observed in exposed F1 male rats. Decreased sperm count, motility and Daily Sperm Production was observed at 100 mg/kg Bw dose at PND 75. Interestingly, the sperm transit time in the epididymis was accelerated at this dose. Significant perturbed testicular expression of steroid receptors (ERα and β, AR), INSL3 and StAR genes with increased T and LH levels indicates direct effect on spermatogenesis and steroidogenesis. These F1 generation adult rats were sub-fertile with increased (%) pre- and post-implantation loss at 100 and 1000 mg/kg Bw/day dose. This is the first report on n-butylparaben highlighting the involvement of testicular leydig cells with accelerated sperm transit time leading to reduced fertility in the maternally exposed F1 male rats through estrogenic/anti-androgenic action.
Afficher plus [+] Moins [-]