Affiner votre recherche
Résultats 1221-1230 de 5,151
Cyanotoxins as the “common suspects” for the Dalmatian pelican (Pelecanus crispus) deaths in a Mediterranean reconstructed reservoir Texte intégral
2018
Papadimitriou, T. | Katsiapi, M. | Vlachopoulos, K. | Christopoulos, Arthur | Laspidou, C. | Moustaka-Gouni, M. | Kormas, K.
Toxic cyanobacterial blooms have been implicated for their negative consequences on many terrestrial and aquatic organisms. Water birds belong to the most common members of the freshwater food chains and are most likely to be affected by the consumption of toxic cyanobacteria as food. However, the contribution of cyanotoxins in bird mortalities is under-studied. The aim of the study was to investigate the likely role of cyanotoxins in a mass mortality event of the Dalmatian pelican (Pelecanus crispus) in the Karla Reservoir, in Greece. Water, scum, tissues and stomach content of dead birds were examined for the presence of microcystins, cylindrospermopsins and saxitoxins by an enzyme-linked immunosorbent assay. High abundances of potential toxic cyanobacterial species and significant concentrations of cyanotoxins were recorded in the reservoir water. All examined tissues and stomach content of the Dalmatian pelicans contained significant concentrations of microcystins and saxitoxins. Cylindrospermopsin concentrations were detected in all tissues except from the brain. Our results suggest that cyanotoxins are a plausible cause for this bird mass mortality episode in the Karla Reservoir.
Afficher plus [+] Moins [-]Diet-specific trophic transfer of mercury in tilapia (Oreochromis niloticus): Biodynamic perspective Texte intégral
2018
Wang, Rui | Wang, Wen-Xiong
This study tested the hypothesis that different diets could modulate mercury (Hg) trophic transfer by concurrently altering the transfer of energy (in terms of growth) and transfer of Hg (in terms of biodynamic process). Firstly, we conducted a 40-d laboratory bioaccumulation experiment, in which tilapia (Oreochromis niloticus) was exposed to inorganic mercury (Hg[II]) and methylmercury (MeHg) via feeding on three distinct diets (macrophyte, freshwater shrimp, and commercial pellets) at a fixed ingestion rate of 0.065 g g⁻¹ d⁻¹. During the dietary exposure period, tilapia exhibited Hg species- and diet-dependent Hg trophic transfer patterns and diet-specific growth rates. We then employed a biokinetic model to assess how diet-specific biodynamics and/or diet-specific growth rates modulated the overall Hg bioaccumulation and trophic transfer. The diet-specific assimilation efficiencies (AEs) were monitored using radioisotope technique, and the determined AEs of Hg(II) (8.6%–29.7%) varied by 3.5 times among diets whereas the MeHg AEs (94.4%–97.1%) were not affected. The biokinetic modeling further revealed that Hg(II) trophic transfer in tilapia was controlled by the diet-specific AEs, while MeHg trophic transfer was governed by the diet-specific growth rates. Specifically, a diet-derived high growth rate reduced the MeHg trophic transfer in pellets-fed tilapia, and the overall accumulated MeHg level in fish was under the control of both somatic growth dilution and dietary MeHg influx. Moreover, we observed that the Hg levels (mainly as MeHg) in fast-growing farmed tilapia were significantly lower than wild-living tilapia after 100 d exposure in the field, attributed to somatic growth dilution (SGD). Both the laboratory and field study therefore demonstrated the importance of diet-derived SGD in modulating mercury trophic transfer in aquatic food webs.
Afficher plus [+] Moins [-]Characteristics and health effects of formaldehyde and acetaldehyde in an urban area in Iran Texte intégral
2018
Delikhoon, Mahdieh | Fazlzadeh, Mehdi | Sorooshian, Armin | Baghani, Abbas Norouzian | Golaki, Mohammad | Ashournejad, Qadir | Barkhordari, Abdullah
This study reports a spatiotemporal characterization of formaldehyde and acetaldehyde in the summer and winter of 2017 in the urban area of Shiraz, Iran. Sampling was fulfilled according to EPA Method TO-11 A. The inverse distance weighting (IDW) procedure was used for spatial mapping. Monte Carlo simulations were conducted to evaluate carcinogenic and non-cancer risk owing to formaldehyde and acetaldehyde exposure in 11 age groups. The average concentrations of formaldehyde/acetaldehyde in the summer and winter were 15.07/8.40 μg m⁻³ and 8.57/3.52 μg m⁻³, respectively. The formaldehyde to acetaldehyde ratios in the summer and winter were 1.80 and 2.43, respectively. The main sources of formaldehyde and acetaldehyde were photochemical generation, vehicular traffic, and biogenic emissions (e.g., coniferous and deciduous trees). The mean inhalation lifetime cancer risk (LTCR) values according to the Integrated Risk Information System (IRIS) for formaldehyde and acetaldehyde in summer and winter ranged between 7.55 × 10⁻⁶ and 9.25 × 10⁻⁵, which exceed the recommended value by US EPA. The average LTCR according to the Office of Environmental Health Hazard Assessment (OEHHA) for formaldehyde and acetaldehyde in summer and winter were between 4.82 × 10⁻⁶ and 2.58 × 10⁻⁴, which exceeds recommended values for five different age groups (Birth to <1, 1 to <2, 2 to <3, 3 to <6, and 6 to <11 years). Hazard quotients (HQs) of formaldehyde ranged between 0.04 and 4.18 for both seasons, while the HQs for acetaldehyde were limited between 0.42 and 0.97.
Afficher plus [+] Moins [-]Relationships between plastic litter and chemical pollutants on benthic biodiversity Texte intégral
2018
D’Alessandro, Michela | Esposito, Valentina | Porporato, Erika M.D. | Berto, Daniela | Renzi, Monia | Giacobbe, Salvatore | Scotti, Gianfranco | Consoli, Pierpaolo | Valastro, Gaetano | Andaloro, Franco | Romeo, Teresa
Five Descriptors (D) of Marine Strategy Framework Directive (MSFD): marine litter (D10), non-indigenous species (D2) and organic and inorganic pollutants (D8), were estimated in a coastal area of GSA 16 (Augusta harbour, Central Mediterranean Sea) in order to study their effects on the biodiversity (D1) of the benthic community D6) and to improve data for the MSFD. Investigation of plastic debris had led to the identification of 38 fragments divided into four categories, among which microplastics resulted as the most abundant. Six non-indigenous species, belonging to Polychaeta (Kirkegaardia dorsobranchialis, Notomastus aberans, Pista unibranchia, Pseudonereis anomala, Branchiomma bairdi) and Mollusca (Brachidontes pharaonis) were found. Biodiversity and benthic indices suggested a generalised, slightly disturbed ecological status. Anthracene, Zinc and Chrome were the most abundant chemical compounds in analysed sediments. Significant correlations were found between the abundance of trace elements vs biotic indices and between plastic debris vs biodiversity and benthic indices. This study represents the first report about the abundance of plastic debris and its relationship to contaminants and infauna in Augusta harbour. Our results can provide useful information for national and international laws and directives.
Afficher plus [+] Moins [-]Influence of urbanisation characteristics on the variability of particle-bound heavy metals build-up: A comparative study between China and Australia Texte intégral
2018
Wijesiri, Buddhi | Liu, An | Gunawardana, Chandima | Hong, Nian | Zhu, Panfeng | Guan, Yuntao | Goonetilleke, Ashantha
Heavy metal pollution of urban stormwater poses potential risks to human and ecosystem health. The design of reliable pollution mitigation strategies requires reliable stormwater modelling approaches. Current modelling practices do not consider the influence of urbanisation characteristics on stormwater quality. This could undermine the accuracy of stormwater quality modelling results. This research study used a database consisting of over 1000 datasets to compare the characteristics of heavy metal build-up (one of the most important stormwater pollutant processes) on urban surfaces under the influence of anthropogenic and natural factors specific to different urban regions from China (Shenzhen) and Australia (Gold Coast), using Bayesian Networks. The outcomes show that the differences in heavy metals build-up loads between the two regions (mean value for Shenzhen – mean value for Gold Coast)/mean value for Shenzhen) were 0.45 (Al), 0.88 (Cr), 0.99 (Mn), 0.68 (Fe), 0.98 (Ni), 0.24 (Cu), 0.47 (Zn) and 0.13 (Pb), respectively. The research outcomes also confirmed that the influence of traffic on the build-up of different sized particles varies between Shenzhen and Gold Coast, and traffic plays distinct roles as a source and as a factor that drives heavy metal re-distribution. The road surface roughness was also found to influence build-up process differently between the two regions. More importantly, the assessment of inherent process uncertainty revealed that heavy metal build-up between different road sites in Shenzhen varies over a wider range than in Gold Coast. The study highlighted a clear distinction in the influence of sources and key anthropogenic factors on the variability of particle-bound heavy metals build-up between geographically different urban regions. The study outcomes provide new knowledge to enhance the accuracy of urban stormwater quality modelling.
Afficher plus [+] Moins [-]Occurrence of microplastics in the water column and sediment in an inland sea affected by intensive anthropogenic activities Texte intégral
2018
Dai, Zhenfei | Zhang, Haibo | Zhou, Qian | Tian, Yuan | Chen, Tao | Du, Zhen | Fu, Chuancheng | Luo, Yongming
Microplastics may lose buoyancy and occur in deeper waters and ultimately sink to the sediment and this may threaten plankton inhabiting in various water layers and benthic organisms. Here, we conduct the first survey on microplastics in the water column and corresponding sediment in addition to the surface water in the Bohai Sea. A total of 20 stations covering whole Bohai Sea were selected, which included 6 stations specified for water column studying. Seawater was sampled every 5 m, with maximal depth of 30 m in the water column using Niskin bottles coupled with a ship-based conductivity, temperature and depth sensor (CTD) system and surface sediment samples were collected using box corer. The results indicated that higher microplastic levels accumulated at a depth range of 5–15 m in the water column in some stations, suggesting the surface water survey was not sufficient to reflect microplastics loading in a water body. Fibers predominated microplastic types in both seawater and sediment of the Bohai Sea, which accounted for 75%–96.4% of the total microplastics. However the relatively proportion of the fibers in the deeper water layers and sediment was lower than that in the surface water. Microplastic shapes are more diverse in the sediment than in the seawater in general. The microplastic sizes changed with depth in the water column and the proportion of the size-fraction < 300 μm increased with depth, probably as a result of rapid biofouling on the small microplastics due to their higher specific surface area. Such depth distribution also implied that sampling with manta net (>330 μm) that commonly used in the oceanographic survey might underestimate microplastics abundance in the water column. Further studies are recommended to focus on the sinking behavior of microplastics and their effects on marine organisms.
Afficher plus [+] Moins [-]Assessing mercury contamination patterns of fish communities in the Laurentian Great Lakes: A Bayesian perspective Texte intégral
2018
Visha, Ariola | Gandhi, Nilima | Bhavsar, Satyendra P. | Arhonditsis, George B.
We examine the spatio-temporal trends of mercury, a well-known global legacy contaminant, in eleven fish species across all of the Canadian Great Lakes. These particular fish species are selected based on their ecological, commercial, and recreational importance to the biodiversity and fishing industry of the Great Lakes. We present a two-pronged Bayesian methodological framework to rigorously assess mercury temporal trends across multiple fish species and locations. In the first part of our analysis, we develop dynamic linear models to delineate the total mercury levels and rates of change, while explicitly accounting for the covariance between fish length and mercury levels in fish tissues. We then use hierarchical modelling to evaluate the spatial variability of mercury contamination between nearshore and offshore locations, as well as to examine the hypothesis that invasive species have induced distinct shifts on fish mercury contamination trends. Our analysis suggests that the general pattern across the Great Lakes was that the elevated mercury concentrations during the 1970s had been subjected to a declining trend throughout the late 1980s/early 1990s, followed by a gradual stabilization after the late 1990s/early 2000s. The declining trend was more pronounced with top fish predators, whereas benthivorous fish species mainly underwent wax-and-wane cycles with a weaker evidence of a long-term declining trend. Historically contaminated regions, designated as Areas of Concern, and bays receiving riverine inputs are still characterized by mercury concentrations that can lead to consumption restrictions. Lake Erie displayed the lowest mercury levels across all the fish species examined. However, several species of commercial importance showed a reversing (increasing) trend in the 2000s, although their current levels do not pose any major concerns for consumption advisories. These recent trend reversals can be linked with systematic shifts in energy trophodynamics along with the food web alterations induced from the introduction of non-native species, and the potentially significant fluxes from the atmosphere.
Afficher plus [+] Moins [-]Pesticide residues in honey bees, pollen and beeswax: Assessing beehive exposure Texte intégral
2018
Calatayud-Vernich, Pau | Calatayud, Fernando | Simó, Enrique | Picó, Yolanda
Pesticide residues in honey bees, pollen and beeswax: Assessing beehive exposure Texte intégral
2018
Calatayud-Vernich, Pau | Calatayud, Fernando | Simó, Enrique | Picó, Yolanda
In order to study the distribution of pesticide residues in beekeeping matrices, samples of live in-hive worker honey bees (Apis mellifera), fresh stored pollen and beeswax were collected during 2016–2017 from 45 apiaries located in different landscape contexts in Spain. A total of 133 samples were screened for 63 pesticides or their degradation products to estimate the pesticide exposure to honey bee health through the calculation of the hazard quotient (HQ). The influence of the surrounding environment on the content of pesticides in pollen was assessed by comparing the concentrations of pesticide residues found in apiaries from intensive farming landscapes to those found in apiaries located in mountainous, grassland and urban contexts. Beeswax revealed high levels of miticides used in beekeeping such as coumaphos, chlorfenvinphos, fluvalinate and acrinathrin, which were detected in more than 75% of samples. Pollen was predominantly contaminated by miticides but also by insecticides used in agriculture such as chlorpyrifos and acetamiprid, which showed concentrations significantly higher in apiaries located in intensive farming contexts. Pesticides residues were less frequent and at lower concentrations in live honey bees. Beeswax showed the highest average hazard scores (HQ > 5000) to honey bees. Pollen samples contained the largest number of pesticide residues and relevant hazard (HQ > 50) to bees. Acrinathrin was the most important contributor to the hazard quotient scores in wax and pollen samples. The contributions of the pesticides dimethoate and chlorpyrifos to HQ were considered relevant in samples.
Afficher plus [+] Moins [-]Pesticide residues in honey bees, pollen and beeswax: Assessing beehive exposure Texte intégral
2018
Calatayud-Vernich, Pau | Calatayud, Fernando | Simó, Enrique | Picó, Yolanda | Ministerio de Agricultura, Alimentación y Medio Ambiente (España) | Fundación Tatiana Pérez de Guzmán el Bueno | Picó, Yolanda [0000-0002-9545-0965]
In order to study the distribution of pesticide residues in beekeeping matrices, samples of live in-hive worker honey bees (Apis mellifera), fresh stored pollen and beeswax were collected during 2016–2017 from 45 apiaries located in different landscape contexts in Spain. A total of 133 samples were screened for 63 pesticides or their degradation products to estimate the pesticide exposure to honey bee health through the calculation of the hazard quotient (HQ). The influence of the surrounding environment on the content of pesticides in pollen was assessed by comparing the concentrations of pesticide residues found in apiaries from intensive farming landscapes to those found in apiaries located in mountainous, grassland and urban contexts. Beeswax revealed high levels of miticides used in beekeeping such as coumaphos, chlorfenvinphos, fluvalinate and acrinathrin, which were detected in more than 75% of samples. Pollen was predominantly contaminated by miticides but also by insecticides used in agriculture such as chlorpyrifos and acetamiprid, which showed concentrations significantly higher in apiaries located in intensive farming contexts. Pesticides residues were less frequent and at lower concentrations in live honey bees. Beeswax showed the highest average hazard scores (HQ > 5000) to honey bees. Pollen samples contained the largest number of pesticide residues and relevant hazard (HQ > 50) to bees. Acrinathrin was the most important contributor to the hazard quotient scores in wax and pollen samples. The contributions of the pesticides dimethoate and chlorpyrifos to HQ were considered relevant in samples. | This work has been suported by the Spanish Ministerio de Agricultura, Alimentación y Medio Ambiente through the project 20160020000834: “Análisis de la Pérdida de Viabilidad y Despoblamiento de las Colonias de Abejas (Apis mellifera L.) Mediante el Mapeo de Xenobióticos”. Pau Calatayud-Vernich acknowledges the Foundation “Tatiana Pérez de Guzmán el Bueno” for the financial support through PhD Environmental Fellowship Program. We thank to the Agrupación de Defensa Sanitaria Apicola (apiADS) and the particular beekeepers for their help with counseling and sampling. | Peer reviewed
Afficher plus [+] Moins [-]Toxicity and mutagenicity of exhaust from compressed natural gas: Could this be a clean solution for megacities with mixed-traffic conditions? Texte intégral
2018
Agarwal, Avinash K. | Ateeq, Bushra | Gupta, Tarun | Singh, Akhilendra P. | Pandey, Swaroop K. | Sharma, Nikhil | Agarwal, Rashmi A. | Gupta, Neeraj K. | Sharma, Hemant | Jain, Ayush | Shukla, Pravesh C.
Despite intensive research carried out on particulates, correlation between engine-out particulate emissions and adverse health effects is not well understood yet. Particulate emissions hold enormous significance for mega-cities like Delhi that have immense traffic diversity. Entire public transportation system involving taxis, three-wheelers, and buses has been switched from conventional liquid fuels to compressed natural gas (CNG) in the Mega-city of Delhi. In this study, the particulate characterization was carried out on variety of engines including three diesel engines complying with Euro-II, Euro-III and Euro-IV emission norms, one Euro-II gasoline engine and one Euro-IV CNG engine. Physical, chemical and biological characterizations of particulates were performed to assess the particulate toxicity. The mutagenic potential of particulate samples was investigated at different concentrations using two different Salmonella strains, TA98 and TA100 in presence and absence of liver S9 metabolic enzyme fraction. Particulates emitted from diesel and gasoline engines showed higher mutagenicity, while those from CNG engine showed negligible mutagenicity compared to other test fuels and engine configurations. Polycyclic aromatic hydrocarbons (PAHs) adsorbed onto CNG engine particulates were also relatively fewer compared to those from equivalent diesel and gasoline engines. Taken together, our findings indicate that CNG is comparatively safer fuel compared to diesel and gasoline and can offer a cleaner transport energy solution for mega-cities with mixed-traffic conditions, especially in developing countries.
Afficher plus [+] Moins [-]Maternal dietary intake of polyunsaturated fatty acids modifies association between prenatal DDT exposure and child neurodevelopment: A cohort study Texte intégral
2018
Ogaz-González, Rafael | Mérida-Ortega, Ángel | Torres-Sánchez, Luisa | Schnaas, Lourdes | Hernández-Alcaraz, César | Cebrián, Mariano E. | Rothenberg, Stephen J. | García-Hernández, Rosa María | López-Carrillo, Lizbeth
Maternal 1,1-dichloro-2,2-bis(p-chlorophenyl)ethylene (DDE) serum levels during pregnancy have been negatively linked to child neurodevelopment in contrast to intake of omega-3 and -6 (ω-3 and ω-6) fatty acids.To assess whether maternal dietary intake of ω-3 and ω-6 during pregnancy modifies the association between exposure to DDE and child neurodevelopment from age 42–60 months.Prospective cohort study with 142 mother–child pairs performed in Mexico. DDE serum levels were determined by electron capture gas chromatography. Dietary ω-3 and ω-6 intake was estimated by questionnaire. Child neurodevelopment was assessed by McCarthy Scales.Docosahexaenoic (DHA) fatty acid intake significantly modified the association between DDE and motor component: increased maternal DDE was associated with lower motor development in children whose mothers had lower DHA intake (βlog2DDE = −1.25; 95% CI: −2.62, 0.12), in contrast to the non-significant increase among children whose mothers had higher DHA intake (βlog2DDE-motor = 0.50; 95% CI: 0.55, 1.56). Likewise, arachidonic fatty acid (ARA) intake modified the association between DDE and memory component: increased maternal DDE was associated with a significantly larger reduction in the memory component in children whose mothers had lower ARA intake (βlog2DDE = −1.31; 95% CI: −2.29, −0.32) than children whose mothers had higher ARA intake (βlog2DDE-memory = 0.17; 95% CI: −0.78, 1.11).Dietary intake of DHA and ARA during pregnancy may protect against child neurodevelopment damage associated with prenatal maternal DDE levels.
Afficher plus [+] Moins [-]