Affiner votre recherche
Résultats 1221-1230 de 7,997
Brown carbon light absorption over an urban environment in northern peninsular Southeast Asia Texte intégral
2021
Pani, Shantanu Kumar | Lin, Neng-Huei | Griffith, Stephen M. | Chantara, Somporn | Lee, Chung-Te | Thepnuan, Duangduean | Tsai, Ying I.
Light-absorbing organic carbon (or brown carbon, BrC) has been recognized as a critical driver in regional-to-global climate change on account of its significant contribution to light absorption. BrC sources vary from primary combustion processes (burning of biomass, biofuel, and fossil fuel) to secondary formation in the atmosphere. This paper investigated the light-absorbing properties of BrC such as site-specific mass absorption cross-section (MACBᵣC), absorption Ångström exponent (AAEBᵣC), and the absorbing component of the refractive index (kBᵣC) by using light absorption measurements from a 7-wavelength aethalometer over an urban environment of Chiang Mai, Thailand in northern peninsular Southeast Asia (PSEA), from March to April 2016. The contribution of BrC to total aerosol absorption (mean ± SD) was 46 ± 9%, 29 ± 7%, 24 ± 6%, 20 ± 4%, and 15 ± 3% at 370, 470, 520, 590, and 660 nm, respectively, highlighting the significant influence of BrC absorption on the radiative imbalance over northern PSEA. Strong and significant associations between BrC light absorption and biomass-burning (BB) organic tracers highlighted the influence of primary BB emissions. The median MACBᵣC and kBᵣC values at 370 nm were 2.4 m² g⁻¹ and 0.12, respectively. The fractional contribution of solar radiation absorbed by BrC relative to BC (mean ± SD) in the 370–950 nm range was estimated to be 34 ± 7%, which can significantly influence the regional radiation budget and consequently atmospheric photochemistry. This study provides valuable information to understand BrC absorption over northern PSEA and can be used in model simulations to reassess the regional climatic impact with greater accuracy.
Afficher plus [+] Moins [-]4-Hexylphenol influences adipogenic differentiation and hepatic lipid accumulation in vitro Texte intégral
2021
Sun, Zhendong | Cao, Huiming | Liu, Qian S. | Liang, Yong | Fiedler, H. (Heidelore) | Zhang, Jianqing | Zhou, Qunfang | Jiang, Guibin
Finding the potential environmental obesogens is crucial to explain the prevalence of obesity and the related pathologies. Increasing evidence has showed that many chemicals with endocrine disrupting effects can disturb lipid metabolism. Whether 4-hexylphenol (4-HP), a widely-used surfactant and a potential endocrine disrupting chemical (EDC), is associated to influence adipogenesis and hepatic lipid accumulation remained to be elucidated. In this study, both the 3T3-L1 differentiation model and oleic acid (OA)-treated HepG2 cells were used to investigate the effects of 4-HP on lipid metabolism, and the underlying estrogen receptor (ER)-involved mechanism was explored using MVLN assay, molecular docking simulation and the antagonist test. The results based on lipid droplet staining and triglyceride accumulation assay showed that 4-HP treatment promoted the adipogenic differentiation of 3T3-L1 cells and increased hepatic cellular OA accumulation in exposure concentration-dependent manners. The study on the elaborated transcription networks indicated that 4-HP activated peroxisome proliferator-activated receptor γ (PPARγ) as well as the subsequent adipogenic gene program in 3T3-L1 cells. This chemical also induced the increase of OA uptake and decreases of de novo lipogenesis and fatty acid oxidation in HepG2 cells. The agonistic activity of 4-HP in triggering ER-mediated pathway was shown to correlate with its perturbation in lipid metabolism, as evidenced by the enhanced development of mature lipid-laden adipocytes and suppression of excessive hepatic lipid accumulation upon its co-treatment with ER antagonist. Altogether, these findings provide new insights into the potential health impacts of 4-HP exposure as it may relate to obesity and nonalcoholic fatty liver disease.
Afficher plus [+] Moins [-]Phosphorus mobilization in unamended and magnesium sulfate-amended soil monoliths under simulated snowmelt flooding Texte intégral
2021
Vitharana, Udaya W.A. | Kumaragamage, Darshani | Balasooriya, B.L.W.K. | Indraratne, Srimathie P. | Goltz, Doug
Enhanced release of phosphorus (P) from soils with snowmelt flooding poses a threat of eutrophication to waterbodies in cold climatic regions. Reductions in P losses with various soil amendments has been reported, however effectiveness of MgSO₄ has not been studied under snowmelt flooding. This study examined (a) the P release enhancement with flooding in relation to initial soil P status and (b) the effectiveness of MgSO₄ at two rates in reducing P release to floodwater under simulated snowmelt flooding. Intact soil monoliths were collected from eight agricultural fields from Southern Manitoba, Canada. Unamended and MgSO₄ surface-amended monoliths (2.5 and 5.0 Mg ha⁻¹) in triplicates were pre-incubated for 7 days, then flooded and incubated (4 °C) for 56 days. Pore water and floodwater samples collected at 7-day intervals were analyzed for dissolved reactive P (DRP), pH, Ca, Mg, Fe and Mn. Redox potential (Eh) was measured on each day of sampling. Representative soil samples collected from each field were analyzed for Olsen and Mehlich 3-P. Simulated snowmelt flooding enhanced the mobility of soil P with approximately 1.2–1.6 -fold increase in pore water DRP concentration from 0 to 21 days after flooding. Mehlich-3 P content showed a strong relationship with the pore water DRP concentrations suggesting its potential as a predictor of P loss risk during prolonged flooding. Surface application of MgSO₄ reduced the P release to pore water and floodwater. The 2.5 Mg ha⁻¹ rate was more effective than the higher rate with a 21–75% reduction in average pore water DRP, across soils. Soil monoliths amended with MgSO₄ maintained a higher Eh, and had greater pore water Ca and Mg concentrations, which may have reduced redox-induced P release and favored re-precipitation of P with Ca and Mg, thus decreasing DRP concentrations in pore water and floodwater.
Afficher plus [+] Moins [-]The effects and mechanisms of polystyrene and polymethyl methacrylate with different sizes and concentrations on Gymnodinium aeruginosum Texte intégral
2021
Huang, Wenqiu | Zhao, Ting | Zhu, Xiaolin | Ni, Ziqi | Guo, Xin | Tan, Liju | Wang, Jiangtao
In this study, Gymnodinium aeruginosum was exposed to polystyrene (PS) and polymethyl methacrylate (PMMA) of three particle sizes (0.1 μm, 1.0 μm and 100 μm) and two concentrations (10 mg/L and 75 mg/L) for 96 h. The density of algae cells, the endpoints that reactive oxygen species (ROS), total protein (TP), malondialdehyde (MDA), superoxide dismutase (SOD) and catalase (CAT), scanning and transmission electron microscopy (SEM and TEM) were used to explore the toxicity mechanism to the microalgae. At a concentration of 75 mg/L, the 96 h inhibition ratios (IR) with particle sizes of 0.1 μm, 1.0 μm and 100 μm on G. aeruginosum were 55.9%, 63.7% and 6.0% for PS, respectively, and 3.0%, 4.1% and ‐0.6% for PMMA, respectively. The most significant changes in ROS, TP, MDA, SOD and CAT were observed at 75 mg/L 1.0 μm of PS when treated for 96 h. When exposed to nanoplastics (NPs) and microplastics (MPs), the algae cells were damaged, and the antioxidant system was activated. Extracellular polymeric substance (EPS) could help to detoxify the algae. In general, PS was more toxic than PMMA. The toxicity of small MNPs (0.1 μm and 1.0 μm) was related to the concentrations, while large MNPs (100 μm) did not.
Afficher plus [+] Moins [-]Health risks of inhaled selected toxic elements during the haze episodes in Shijiazhuang, China: Insight into critical risk sources Texte intégral
2021
Diao, Liuli | Zhang, Huitao | Liu, Baoshuang | Dai, Chunling | Zhang, Yufen | Dai, Qili | Bi, Xiaohui | Zhang, Lingzhi | Song, Congbo | Feng, Yinchang
PM₂.₅ in Shijiazhuang was collected from October 15, 2018 to January 31, 2019, and selected toxic elements were measured. Five typical haze episodes were chosen to analyze the health risks and critical risk sources. Toxic elements during the haze episodes accounted for 0.33% of PM₂.₅ mass. Non-cancer risk of toxic elements for children was 1.8 times higher than that for adults during the haze episodes, while cancer risk for adults was 2.5 times higher than that for children; cancer and non-cancer risks were primarily attributable to As and Mn, respectively. Health risks of toxic elements increased during the growth and stable periods of haze episodes. Non-cancer and cancer risks of toxic elements during the haze stable periods were higher than other haze stages, and higher for children than for adults during the stable period. Mn was the largest contributor to non-cancer risk during different haze stages, while As was the largest contributor to cancer risk. Crustal dust, vehicle emissions, and industrial emissions were critical sources of cancer risk during the clean-air periods; while vehicle emissions, coal combustion, and crustal dust were key sources of cancer risk during the haze episodes. Cancer risks of crustal dust and vehicle emissions during the haze episodes were 2.0 and 1.7 times higher than those in the clean-air periods. Non-cancer risks from emission sources were not found during different periods. Cancer risks of biomass burning and coal combustion increased rapidly during the haze growth period, while that of coal combustion decreased sharply during the dissipation period. Vehicle emissions, crustal dust, and coal combustion were significant cancer risk sources during different haze stages, cancer risk of each source was the highest during the stable period. Southern Hebei, Northern and central Shaanxi were potential risk regions that affected the health of both adults and children in Shijiazhuang.
Afficher plus [+] Moins [-]Fumonisin B1 induced aggressiveness and infection mechanism of Fusarium proliferatum on banana fruit Texte intégral
2021
Xie, Lihong | Wu, Yanfei | Wang, Yong | Jiang, Yueming | Yang, Bao | Duan, Xuewu | Li, Taotao
Mycotoxins are increasingly considered as micropollutants in the environment. Fumonisins, as one of the most important mycotoxins, cause potential health threats to humans and animals due to their ubiquitous contamination on cereals, fruit, vegetables and other environmental samples around the world. However, the contribution of fumonisins to the interaction of fungi with plant hosts is not still fully understood. Here, we investigated the effect of fumonisin B1 (FB1) on the infection of Fusarium proliferatum on banana fruit and the underlying mechanisms from the host perspective. Our results found that FB1 treatment increased the aggressiveness of F. proliferatum on banana fruit and inhibited the defense ability of banana fruit via decreasing phenylalanine ammonia lyase (PAL), β-1,3-glucanase (GLU) and chitinase (CHI) activities. Meanwhile, FB1 accelerated cell death, indicated by higher relative conductivity, MDA content and higher transcripts of cell death-related genes. FB1 treatment resulted in higher hydrogen peroxide (H₂O₂) content possibly due to MaRBOHs induction. These consequences accelerated the ROS-dependent cell death, which subsequently result in reduction of disease resistance of banana fruit. Additionally, energy metabolism and MaDORN1s-mediated eATP signaling might involve in FB1-meidiated suppression of banana defense responses. Collectively, results of the current study indicated that FB1 contamination triggered the cell death of banana peel, subsequently instigating the invasion and growth of F. proliferatum on banana fruit. In summary, for the first time, we demonstrated a previously unidentified role of fumonisins as a potential virulence factor of F. proliferatum in modulating fruit defense response, which provides new insight on the biological roles of fumonisins.
Afficher plus [+] Moins [-]Profile and consumption risk assessment of trace elements in megamouth sharks (Megachasma pelagios) captured from the Pacific Ocean to the east of Taiwan Texte intégral
2021
Ju, Yun-Ru | Chen, Chih-Feng | Chen, Chiu-Wen | Wang, Ming-Huang | Joung, Shoou-Jeng | Yu, Chi-Ju | Liu, Kwang-Ming | Tsai, Wen-Pei | Vanson Liu, Shang Yin | Dong, Cheng-Di
Focusing on 27 rare filter-feeding megamouth sharks (Megachasma pelagios) captured as a by-catch of drift gillnet fishery in the Pacific Ocean to the east of Taiwan, this study analyzes the concentrations of 24 elements in their muscle, discusses the bioaccumulation of each element and the correlation between different elements, and assesses the potential health risks of consuming megamouth shark muscle. Among the 24 elements, mean concentrations of Ga, Ag, Li, Bi, Hg, Co, and Cd were relatively low ranging from 10⁻³ to 10⁻¹ mg/kg, those of Pb, Ba, Mn, Ni, As, Cr, B, Sr, Cu, and Zn ranged from 10⁻¹–10¹ mg/kg, and those of Fe, Ca, Al, K, Mg, Ti, and Na were relatively high ranging from 10¹ to 10³ mg/kg. The toxic element content index was most significantly correlated with the concentration of Cu. Hence, this study recommends that the concentration of Cu could be used as an indicator of metal accumulation in megamouth shark muscle. The log bioconcentration factor (BCF) ranged from less than 0 to 7.85 in shark muscle. For elements with a concentration of less than 100 μg/L in seawater, the log BCF was inversely proportional to their concentration in seawater. According to the correlation analysis, the accumulation of elements in muscle of megamouth sharks is primarily affected by the concentrations of dissolved elements in seawater, except that the accumulation of Hg, As, Cu, Ti, Al, and Fe appears to be mainly affected by feeding behaviors. The assessment of the health risk of consuming megamouth shark muscle showed that its total hazard index was greater than 1. This suggests that the long-term or high-frequency consumption of megamouth shark muscle may cause health hazards due to the accumulation of trace elements, particularly those with a large contribution of health risk, including As, Hg, and Cu.
Afficher plus [+] Moins [-]Monitoring urban black-odorous water by using hyperspectral data and machine learning Texte intégral
2021
Sarigai, | Yang, Ji | Zhou, Alicia | Han, Liusheng | Li, Yong | Xie, Yichun
Economic development, population growth, industrialization, and urbanization dramatically increase urban water quality deterioration, and thereby endanger human life and health. However, there are not many efficient methods and techniques to monitor urban black and odorous water (BOW) pollution. Our research aims at identifying primary indicators of urban BOW through their spectral characteristics and differentiation. This research combined ground in-situ water quality data with ground hyperspectral data collected from main urban BOWs in Guangzhou, China, and integrated factorial data mining and machine learning techniques to investigate how to monitor urban BOW. Eight key water quality parameters at 52 sample sites were used to retrieve three latent dimensions of urban BOW quality by factorial data mining. The synchronically measured hyperspectral bands along with the band combinations were examined by the machine learning technique, Lasso regression, to identify the most correlated bands and band combinations, over which three multiple regression models were fitted against three latent water quality indicators to determine which spectral bands were highly sensitive to three dimensions of urban BOW pollution. The findings revealed that the many sensitive bands were concentrated in higher hyperspectral band ranges, which supported the unique contribution of hyperspectral data for monitoring water quality. In addition, this integrated data mining and machine learning approach overcame the limitations of conventional band selection, which focus on a limited number of band ratios, band differences, and reflectance bands in the lower range of infrared region. The outcome also indicated that the integration of dimensionality reduction with feature selection shows good potential for monitoring urban BOW. This new analysis framework can be used in urban BOW monitoring and provides scientific data for policymakers to monitor it.
Afficher plus [+] Moins [-]Distribution of antibiotics in water, sediments and biofilm in an urban river (Córdoba, Argentina, LA) Texte intégral
2021
Valdés, M Eugenia | Santos, Lúcia H.M.L.M. | Rodríguez Castro, M Carolina | Giorgi, Adonis | Barceló, Damià | Rodríguez-Mozaz, Sara | Amé, M Valeria
Distribution of antibiotics in water, sediments and biofilm in an urban river (Córdoba, Argentina, LA) Texte intégral
2021
Valdés, M Eugenia | Santos, Lúcia H.M.L.M. | Rodríguez Castro, M Carolina | Giorgi, Adonis | Barceló, Damià | Rodríguez-Mozaz, Sara | Amé, M Valeria
In this study, we evaluated the distribution of up to forty-three antibiotics and 4 metabolites residues in different environmental compartments of an urban river receiving both diffuse and point sources of pollution. This is the first study to assess the fate of different antibiotic families in water, biofilms and sediments simultaneously under a real urban river scenario. Solid phase extraction, bead-beating disruption and pressurized liquid extraction were applied for sample preparation of water, biofilm and sediment respectively, followed by the quantification of target antibiotics by UPLC-ESI-MS/MS. Twelve antibiotics belonging to eight chemical families were detected in Suquía River samples (67% positive samples). Sites downstream the WWTP discharge were the most polluted ones. Concentrations of positive samples ranged 0.003-0.29 µg L⁻¹ in water (max. cephalexin), 2-652 µg kg⁻¹d.w. in biofilm (max. ciprofloxacin) and 2-34 µg kg⁻¹d.w. in sediment (max. ofloxacin). Fluoroquinolones, macrolides and trimethoprim were the most frequently detected antibiotics in the three compartments. However cephalexin was the prevalent antibiotic in water. Antibiotics exhibited preference for their accumulation from water into biofilms rather than in sediments (bioaccumulation factors > 1,000 L kg⁻¹d.w. in biofilms, while pseudo-partition coefficients in sediments < 1,000 L kg⁻¹d.w.). Downstream the WWTP there was an association of antibiotics levels in biofilms with ash-free dry weight, opposite to chlorophyll-a (indicative of heterotrophic communities). Cephalexin and clarithromycin in river water were found to pose high risk for the aquatic ecosystem, while ciprofloxacin presented high risk for development of antimicrobial resistance. This study contributes to the understanding of the fate and distribution of antibiotic pollution in urban rivers, reveals biofilm accumulation as an important environmental fate, and calls for attention to government authorities to manage identified highly risk antibiotics.
Afficher plus [+] Moins [-]Distribution of antibiotics in water, sediments and biofilm in an urban river (Córdoba, Argentina, LA) Texte intégral
2021
Valdés, M. Eugenia | Santos, Lúcia H. M. L. M. | Rodríguez Castro, M. Carolina | Giorgi, Adonis | Barceló, Damià | Rodríguez-Mozaz, Sara | Amé, María V. | Ministerio de Ciencia, Innovación y Universidades (España) | Barceló, Damià [0000-0002-8873-0491] | Consejo Superior de Investigaciones Científicas [https://ror.org/02gfc7t72]
In this study, we evaluated the distribution of up to forty-three antibiotics and 4 metabolites residues in different environmental compartments of an urban river receiving both diffuse and point sources of pollution. This is the first study to assess the fate of different antibiotic families in water, biofilms and sediments simultaneously under a real urban river scenario. Solid phase extraction, bead-beating disruption and pressurized liquid extraction were applied for sample preparation of water, biofilm and sediment respectively, followed by the quantification of target antibiotics by UPLC-ESI-MS/MS. Twelve antibiotics belonging to eight chemical families were detected in Suquía River samples (67% positive samples). Sites downstream the WWTP discharge were the most polluted ones. Concentrations of positive samples ranged 0.003-0.29 µg L-1 in water (max. cephalexin), 2-652 µg kg-1d.w. in biofilm (max. ciprofloxacin) and 2-34 µg kg-1d.w. in sediment (max. ofloxacin). Fluoroquinolones, macrolides and trimethoprim were the most frequently detected antibiotics in the three compartments. However cephalexin was the prevalent antibiotic in water. Antibiotics exhibited preference for their accumulation from water into biofilms rather than in sediments (bioaccumulation factors > 1,000 L kg-1d.w. in biofilms, while pseudo-partition coefficients in sediments < 1,000 L kg-1d.w.). Downstream the WWTP there was an association of antibiotics levels in biofilms with ash-free dry weight, opposite to chlorophyll-a (indicative of heterotrophic communities). Cephalexin and clarithromycin in river water were found to pose high risk for the aquatic ecosystem, while ciprofloxacin presented high risk for development of antimicrobial resistance. This study contributes to the understanding of the fate and distribution of antibiotic pollution in urban rivers, reveals biofilm accumulation as an important environmental fate, and calls for attention to government authorities to manage identified highly risk antibiotics. | This study has been co-financed by the European Union through the European Regional Development Fund (FEDER), by the Agencia Nacional de Promoción Científica y Técnica (FONCyT/PICT-2015-01784) and the International Atomic Energy Agency (CRP: D52039, CN:18849). It has also been partly supported by the Generalitat de Catalunya (Consolidated Research Group: Catalan Institute for Water Research 2014 SGR 291). Lúcia H.M.L.M. Santos thanks the Juan de la Cierva program (IJCI-2017-32747) and Sara Rodríguez-Mozaz thanks the Ramon y Cajal program (RYC-2014-16707) from the Spanish State Research Agency of the Spanish Ministry of Science, Innovation and Universities (AEI-MCIU). ICRA researchers thank funding from CERCA program.Argentinean authors would also like to thank CONICET (Consejo Nacional de Investigaciones Científicas y Técnicas-Argentina) and Sci-Hub for useful access to knowledge. | Peer reviewed
Afficher plus [+] Moins [-]A national cross-sectional study of exposure to outdoor nitrogen dioxide and aeroallergen sensitization in Australian children aged 7–11 years Texte intégral
2021
Tu, Yanhui | Williams, Gail M. | Cortés de Waterman, Adriana M. | Toelle, Brett G. | Guo, Yuming | Denison, Lyn | Babu, Giridhara R. | Yang, Bo-Yi | Dong, Guang-Hui | Jalaludin, Bin | Marks, Guy B. | Knibbs, Luke D.
The prevalence of allergic diseases in Australian children is high, but few studies have assessed the potential role of outdoor air pollution in allergic sensitization. We investigated the association between outdoor air pollution and the prevalence of aeroallergen sensitization in a national cross-sectional study of Australian children aged 7–11 years. Children were recruited from 55 participating schools in 12 Australian cities during 2007–2008. Parents completed a detailed (70-item) questionnaire. Outdoor nitrogen dioxide (NO₂), as a proxy for exposure to traffic-related emissions, was estimated using measurements from regulatory monitors near each school and a national land-use regression (LUR) model. Three averaging periods were assessed, using information on duration of residence at the address, including lifetime, previous (lifetime, excluding the last year), and recent (the last year only). The LUR model was used as an additional source of recent exposure estimates at school and home addresses. Skin prick tests (SPTs) were performed to measure sensitization to eight common aeroallergens. Multilevel logistic regression estimated the association between NO₂ and sensitization (by individual allergens, indoor and outdoor allergens, and all allergens combined), after adjustment for individual- and area-level covariates. In total, 2226 children had a completed questionnaire and SPT. The prevalence of sensitization to any allergen was 44.4%. Sensitization to house dust mites (HDMs) was the most common (36.1%), while sensitization to Aspergillus was the least common (3.4%). Measured mean (±s.d.) NO₂ exposure was between 9 (±2.9) ppb and 9.5 (±3.2) ppb, depending on the averaging period. An IQR (4 ppb) increase in measured previous NO₂ exposure was associated with greater odds of sensitization to HDMs (OR: 1.21, 95% CI: 1.01–1.43, P = 0.035). We found evidence of an association between relatively low outdoor NO₂ concentrations and sensitization to HDMs, but not other aeroallergens, in Australian children aged 7–11 years.
Afficher plus [+] Moins [-]