Affiner votre recherche
Résultats 1251-1260 de 7,997
Untangling radiocesium dynamics of forest-stream ecosystems: A review of Fukushima studies in the decade after the accident Texte intégral
2021
Sakai, Masaru | Tsuji, Hideki | Ishii, Yumiko | Ozaki, Hirokazu | Takechi, Seiichi | Jo, Jaeick | Tamaoki, Masanori | Hayashi, Seiji | Gomi, Takashi
Forest-stream ecosystems are widespread and biodiverse terrestrial landscapes with physical and social connections to downstream human activities. After radiocesium is introduced into these ecosystems, various material flows cause its accumulation or dispersal. We review studies conducted in the decade after the Fukushima nuclear accident to clarify the mechanisms of radiocesium transfer within ecosystems and to downstream areas through biological, hydrological, and geomorphological processes. After its introduction, radiocesium is heavily deposited in the organic soil layer, leading to persistent circulation due to biological activities in soils. Some radiocesium in soils, litter, and organisms is transported to stream ecosystems, forming contamination spots in depositional habitats. While reservoir dams function as effective traps, radiocesium leaching from sediments is a continual phenomenon causing re-contamination downstream. Integration of data regarding radiocesium dynamics and contamination sites, as proposed here, is essential for contamination management in societies depending on nuclear power to address the climate crisis.
Afficher plus [+] Moins [-]Estimating the dietary exposure and risk of persistent organic pollutants in China: A national analysis Texte intégral
2021
Fan, Xiarui | Wang, Ziwei | Li, Yao | Wang, Hao | Fan, Wenhong | Dong, Zhaomin
Substantial heterogeneities have been found in previous estimations of the risk from dietary exposures to persistent organic pollutants (POPs) in China, mainly due to spatiotemporal variations. To comprehensively evaluate the dietary risks of POPs listed in the Stockholm Convention, more than 27,580 data records from 753 reports published over the last three decades were examined. Respectively, for various food categories, the results obtained for the range of mean concentrations of POPs are as follows: total dichlorodiphenyltrichloroethanes (DDTs: 1.4–27.1 μg/kg), hexachlorocyclohexanes (HCHs: 1.8–29.3 μg/kg), polybrominated diphenyl ethers (PBDEs: 0.046–2.82 μg/kg), polychorinated biphenyls (PCBs: 0.05–7.57 μg/kg), polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD&Fs: 2.9–210 pg toxic equivalent (TEQ)/kg), perfluorooctanoic acid (PFOA: 0.02–0.97 μg/kg), perfluoroctane sulfonate (PFOS: 0.00082–2.76 μg/kg) and short-chain chlorinated paraffins (SCCPs: 64–348.92 μg/kg). Temporal decreasing trends were observed for DDTs, HCHs, PBDEs, PCDD&Fs, and PFOA, with no significant change for other POPs. Meanwhile, the estimated daily intake for adults were 75.2 ± 43.6 ng/kg/day for DDTs, 123 ± 87 ng/kg/day for HCHs, 0.37 ± 0.17 pg TEQ/kg/day for PCDD&Fs, 17.8 ± 9.5 ng/kg/day for PCBs, 3.3 ± 1.8 ng/kg/day for PBDEs, 3.6 ± 1.9 ng/kg/day for PFOA, 3.3 ± 2.0 ng/kg/day for PFOS, and 2.5 ± 1.6 μg/kg/day for SCCPs. Furthermore, non-carcinogenic risks were the highest for PCBs (0.89) and PCDD&Fs (0.53), followed by PFOA (0.18), PFOS (0.17), HCHs (0.062), SCCPs (0.025), DDTs (0.0075), and PBDEs (0.00047). These findings illustrated that exposure to POPs declined due to the control policies implemented in China, while the cumulative risk of POPs was still higher than 1, indicating continuous efforts are required to mitigate associated contamination.
Afficher plus [+] Moins [-]Ecotoxicological assessment of palm oil mill effluent final discharge by zebrafish (Danio rerio) embryonic assay Texte intégral
2021
Hashiguchi, Yuya | Zakaria, Mohd Rafein | Toshinari, Maeda | Mohd Yusoff, Mohd Zulkhairi | Shirai, Y. (Yoshihito) | Hassan Mohd. Ali,
Most palm oil mills adopted conventional ponding system, including anaerobic, aerobic, facultative and algae ponds, for the treatment of palm oil mill effluent (POME). Only a few mills installed a bio-polishing plant to treat POME further before its final discharge. The present study aims to determine the quality and toxicity levels of POME final discharge from three different mills by using conventional chemical analyses and fish (Danio rerio) embryo toxicity (FET) test. The effluent derived from mill A which installed with a bio-polishing plant had lower values of BOD, COD and TSS at 45 mg/L, 104 mg/L, and 27 mg/L, respectively. Only mill A nearly met the industrial effluent discharge standard for BOD. In FET test, effluent from mill A recorded low lethality and most of the embryos were malformed after hatching (half-maximal effective concentration (EC50) = 20%). The highest toxicity was observed from the effluent of mill B and all embryos were coagulated after 24 h in samples greater than 75% of effluent (38% of half-maximal lethal concentration (LC50) at 96 h). The embryos in the effluent from mill C recorded high mortality after hatching, and the survivors were malformed after 96 h exposure (LC50 = 26%). Elemental analysis of POME final discharge samples showed Cu, Zn, and Fe concentrations were in the range of 0.10–0.32 mg/L, 0.01–0.99 mg/L, and 0.94–4.54 mg/L, respectively and all values were below the effluent permissible discharge limits. However, the present study found these metals inhibited D. rerio embryonic development at 0.12 mg/L of Cu, and 4.9 mg/L of Fe for 96 h-EC50. The present study found that bio-polishing plant installed in mill A effectively removing pollutants especially BOD and the FET test was a useful method to monitor quality and toxicity of the POME final discharge samples.
Afficher plus [+] Moins [-]Airborne particulate matter induces oxidative damage, DNA adduct formation and alterations in DNA repair pathways Texte intégral
2021
Quezada-Maldonado, Ericka Marel | Sánchez-Pérez, Yesennia | Chirino, Yolanda I. | García-Cuellar, Claudia M.
Air pollution, which includes particulate matter (PM), is classified in group 1 as a carcinogen to humans by the International Agency for Research in Cancer. Specifically, PM exposure has been associated with lung cancer in patients living in highly polluted cities. The precise mechanism by which PM is linked to cancer has not been completely described, and the genotoxicity induced by PM exposure plays a relevant role in cell damage. In this review, we aimed to analyze the types of DNA damage and alterations in DNA repair pathways induced by PM exposure, from both epidemiological and toxicological studies, to comprehend the contribution of PM exposure to carcinogenesis. Scientific evidence supports that PM exposure mainly causes oxidative stress by reactive oxygen species (ROS) and the formation of DNA adducts, specifically by polycyclic aromatic hydrocarbons (PAH). PM exposure also induces double-strand breaks (DSBs) and deregulates the expression of some proteins in DNA repair pathways, precisely, base and nucleotide excision repairs and homologous repair. Furthermore, specific polymorphisms of DNA repair genes could lead to an adverse response in subjects exposed to PM. Nevertheless, information about the effects of PM on DNA repair pathways is still limited, and it has not been possible to conclude which pathways are the most affected by exposure to PM or if DNA damage is repaired properly. Therefore, deepening the study of genotoxic damage and alterations of DNA repair pathways is needed for a more precise understanding of the carcinogenic mechanism of PM.
Afficher plus [+] Moins [-]Environmental microplastic and nanoplastic: Exposure routes and effects on coagulation and the cardiovascular system Texte intégral
2021
Lett, Zachary | Hall, Abigail | Skidmore, Shelby | Alves, Nathan J.
Plastic pollution has been a growing concern in recent decades due to the proliferation and ease of manufacturing of single use plastic products and inadequate waste and recycling management. Microplastic, and even smaller nanoplastic, particles are persistent pollutants in aquatic and terrestrial systems and are the subject of active and urgent research. This review will explore the current research on how exposure to plastic particles occurs and the risks associated from different exposure routes: ingestion, inhalation, and dermal exposure. The effects of microplastics on the cardiovascular system are of particular importance due to its sensitivity and ability to transport particles to other organ systems. The effects of microplastics and nanoplastics on the heart, platelet aggregation, and thrombus formation will all be explored with focus on how the particle characteristics modulate their effect. Plastic particle interactions are highly dependent on both their size and their surface chemistry and interesting research is being done with the interaction of particle characteristics and effect on thrombosis and the cardiovascular system. There is significant uncertainty surrounding some of the findings in this field as research in this area is still maturing. There are undoubtedly more physiological consequences than we are currently aware of resulting from environmental plastic exposure and more studies need to be conducted to reveal the full extent of pathologies caused by the various routes of microplastic exposure, with particular emphasis on longitudinal exposure effects. Further research will allow us to recognize the full extent of physiological impact and begin developing viable solutions to reduce plastic pollution and potentially design interventions to mitigate in-vivo plastic effects following significant or prolonged exposure.
Afficher plus [+] Moins [-]Toxicity of binary mixtures of pesticides and pharmaceuticals toward Vibrio fischeri: Assessment by quantitative structure-activity relationships Texte intégral
2021
Sigurnjak Bureš, M. | Ukić, Š | Cvetnić, M. | Prevarić, V. | Markić, M. | Rogošić, M. | Kušić, H. | Bolanča, T.
Pollutants in real aquatic systems commonly occur as chemical mixtures. Yet, the corresponding risk assessment is still mostly based on information on single-pollutant toxicity, accepting the assumption that pollutant mixtures exhibit additive toxicity effect which is often not the case. Therefore, it is still better to use the experimental approach. Unfortunately, experimental determination of toxicity for each mixture is practically unfeasible. In this study, quantitative structure-activity relationship (QSAR) models for the prediction of toxicity of binary mixtures towards bioluminescent bacteria Vibrio fischeri were developed at three toxicity levels (EC₁₀, EC₃₀ and EC₅₀). For model development, experimentally determined toxicity values of 14 pollutants (pharmaceuticals and pesticides) were correlated with their structural features, applying multiple linear regression together with genetic algorithm. Statistical analysis, internal validation and external validation of the models were carried out. The toxicity is accurately predicted by all three models. EC₃₀ and EC₅₀ values are mostly influenced by geometrical distances between nitrogen and sulfur atoms. Furthermore, the simultaneous presence of oxygen and chlorine atoms in mixture can induce the increase in toxicity. At lower effect levels (EC₁₀), nitrogen atom bonded to different groups has the highest impact on mixture toxicity. Thus, the analysis of the descriptors involved in the developed models can give insight into toxic mechanisms of the binary systems.
Afficher plus [+] Moins [-]Accumulation and characteristics of fluorescent dissolved organic matter in loess soil-based subsurface wastewater infiltration system with aeration and biochar addition Texte intégral
2021
Li, Wen | Liang, Chenglong | Dong, Lu | Zhao, Xin | Wu, Haiming
Subsurface wastewater infiltration systems (SWISs) have been widely used to treat rural domestic sewage. However, the low nitrogen removal and severe clogging problem always restrict the sustainability of SWISs for wastewater treatment. This study investigated the effects of aeration and biochar on the accumulation of nutrients and dissolved organic matter (DOM) in the substrate of loess soil-based SWISs for understanding the accumulation characteristics of DOM and the enhanced decontamination mechanism. The results showed that biochar addition could not improve the accumulation of nitrogen and phosphorus in the substrate, but could enhance denitrification (22%) via providing sufficient carbon for microorganisms. Moreover, the accumulation of organic matter in the substrate was also greatly affected. The DOM concentration of System D in the 40–60 cm layer reached 85.76 mg L⁻¹, which indicated that biochar could release abundant DOM. Substrate DOM mainly contained humic acid-like and tryptophan-like substances. Moreover, the refractory macromolecular DOM components with high aromaticity and humification were found in the substrate below 60 cm of systems with biochar addition. This may be related to the DOM released by biochar and the extracellular polymeric substance (EPS) produced by microorganisms. It may affect the sustainability of the substrate to a certain extent, but fortunately that intermittent aeration could reduce this adverse effect. This research could provide new insights for preventing clogging and useful guidance for improving wastewater treatment performance in SWISs.
Afficher plus [+] Moins [-]Carbon cloth facilitates semi-continuous anaerobic digestion of organic wastewater rich in volatile fatty acids from dark fermentation Texte intégral
2021
Feng, Dong | Xia, Ao | Liao, Qiang | Nizami, Abdul-Sattar | Sun, Chihe | Huang, Yun | Zhu, Xianqing | Zhu, Xun
The anaerobic digestion of wastewater rich in volatile fatty acids (VFAs) provides a sustainable approach for methane production whilst reducing environmental pollution. However, the anaerobic digestion of VFAs may not be stable during long-term operation under a short hydraulic retention time. In this study, conductive carbon cloth was supplemented to investigate the impacts on the anaerobic digestion of VFAs in wastewater sourced from dark fermentation. The results demonstrated that the failure of anaerobic digestion could be avoided when carbon cloth was supplemented. In the stable stage, the methane production rate with carbon cloth supplementation was improved by 200–260%, and the chemical oxygen demand (COD) removal efficiency was significantly enhanced compared with that in the control without carbon cloth. The relative abundance of potential exoelectrogens on the carbon cloth was increased by up to 8-fold compared with that in the suspension. Electrotrophic methanogens on the carbon cloth were enriched by 4.2–17.2% compared with those in the suspension. The genera Ercella and Petrimonas along with the methanogenic archaea Methanosaeta and Methanosarcina on the carbon cloth may facilitate direct interspecies electron transfer, thereby enhancing methane production.
Afficher plus [+] Moins [-]Biological iron nitrogen cycle in ecological floating bed: Nitrogen removal improvement and nitrous oxide emission reduction Texte intégral
2021
Sun, Shanshan | Gu, Xushun | Zhang, Manping | Tang, Li | He, Shengbing | Huang, Jungchen
Ecological floating beds (EFBs) have become a superior method for treating secondary effluent from wastewater treatment plant. However, insufficient electron donor limited its denitrification efficiency. Iron scraps from lathe cutting waste consist of more than 95% iron could be used as electron donors to enhance denitrification. In this study, EFBs with and without iron scraps supplementation (EFB-Fe and EFB, respectively) were conducted to explore the impacts of iron scraps addition on nitrogen removal, nitrous oxide (N₂O) emissions and microbial communities. Results showed the total nitrogen (TN) removal in EFB-Fe improved to 79% while that in EFB was 56%. N₂O emission was 0–6.20 mg m⁻² d⁻¹ (EFB-Fe) and 1.74–15.2 mg m⁻² d⁻¹ (EFB). Iron scraps could not only improve nitrogen removal efficiency, but also reduce N₂O emissions. In addition, high-throughput sequencing analysis revealed that adding iron scraps could improve the sum of denitrification related genera, among which Novosphingobium accounted for the highest proportion (6.75% of PFe1, 4.24% of PFe2, 3.18% of PFe3). Iron-oxidizing bacteria and iron-respiring bacteria associated with and nitrate reducing bacteria mainly concentrated on the surface of iron scraps. Principal co-ordinates analysis (PCoA) indicated that iron scraps were the key factor affecting microbial community composition. The mechanism of iron scraps enhanced nitrogen removal was realized by enhanced biological denitrification process. Iron release dynamic from iron scraps was detected in bench-scale experiment and the electron transfer mechanism was that Fe⁰ transferred electrons directly to NO₃⁻-N, and biological iron nitrogen cycle occurred in EFB-Fe without secondary pollution.
Afficher plus [+] Moins [-]The impact of COVID-19 lockdowns on surface urban heat island changes and air-quality improvements across 21 major cities in the Middle East Texte intégral
2021
El Kenawy, Ahmed M. | Lopez-Moreno, Juan I. | McCabe, Matthew F. | Domínguez-Castro, Fernando | Peña-Angulo, Dhais | Gaber, Islam M. | Alqasemi, Abduldaem S. | Al Kindi, Khalifa M. | Al-Awadhi, Talal | Hereher, Mohammed E. | Robaa, Sayed M. | Al Nasiri, Noura | Vicente-Serrano, Sergio M.
This study investigates changes in air quality conditions during the restricted COVID-19 lockdown period in 2020 across 21 metropolitan areas in the Middle East and how these relate to surface urban heat island (SUHI) characteristics. Based on satellite observations of atmospheric gases from Sentinel-5, results indicate significant reductions in the levels of atmospheric pollutants, particularly nitrogen dioxide (NO₂), sulfur dioxide (SO₂), and carbon monoxide (CO). Air quality improved significantly during the middle phases of the lockdown (April and May), especially in small metropolitan cities like Amman, Beirut, and Jeddah, while it was less significant in “mega” cities like Cairo, Tehran, and Istanbul. For example, the concentrations of NO₂ in Amman, Beirut, and Jeddah decreased by −56.6%, −43.4%, and −32.3%, respectively, during April 2020, compared to April 2019. Rather, there was a small decrease in NO₂ levels in megacities like Tehran (−0.9%) and Cairo (−3.1%). Notably, during the lockdown period, there was a decrease in the mean intensity of nighttime SUHI, while the mean intensity of daytime SUHI experienced either an increase or a slight decrease across these locations. Together with the Gulf metropolitans (e.g. Kuwait, Dubai, and Muscat), the megacities (e.g. Tehran, Ankara, and Istanbul) exhibited anomalous increases in the intensity of daytime SUHI, which may exceed 2 °C. Statistical relationships were established to explore the association between changes in the mean intensity and the hotspot area in each metropolitan location during the lockdown. The findings indicate that the mean intensity of SUHI and the spatial extension of hotspot areas within each metropolitan had a statistically significant negative relationship, with Pearson's r values generally exceeding - 0.55, especially for daytime SUHI. This negative dependency was evident for both daytime and nighttime SUHI during all months of the lockdown. Our findings demonstrate that the decrease in primary pollutant levels during the lockdown contributed to the decrease in the intensity of nighttime SUHIs in the Middle East, especially in April and May. Changes in the characteristics of SUHIs during the lockdown period should be interpreted in the context of long-term climate change, rather than just the consequence of restrictive measures. This is simply because short-term air quality improvements were insufficient to generate meaningful changes in the region's urban climate.
Afficher plus [+] Moins [-]