Affiner votre recherche
Résultats 1271-1280 de 5,149
Trace elements concentrations in soil, desert-adapted and non-desert plants in central Iran: Spatial patterns and uncertainty analysis Texte intégral
2018
Sakizadeh, Mohamad | Rodríguez Martín, Jose Antonio | Zhang, Chaosheng | Sharafabadi, Fatemeh Mehrabi | Ghorbani, Hadi
The concentrations of Cd, Cr and Pb in soil samples and As, Cd, Cr and Pb in plant specimens were analyzed in an arid area in central Iran. Plants were categorized into desert-adapted (Haloxylon ammodendron, Atraphaxis spinosa and Artemisia persica) and non-desert species. It was found that the trace element (TE) accumulating potential of the desert species (Haloxylon ammodendron and Artemisia persica) with a mean value of 0.1 mg kg⁻¹ for Cd was significantly higher than that of the majority of the non-desert species with an average of 0.05 mg kg⁻¹. Artemisia also had a high As accumulating capability with a mean level of 0.8 mg kg⁻¹ in comparison with an average of 0.2 mg kg⁻¹ for most of the other plant species. The mean values of Cr and Pb in Haloxylon ammodendron and Artemisia persica were 5 and 3 mg kg⁻¹, respectively. Among the desert-adapted plants, Atraphaxis proved to be a species with high Cr and Pb accumulating potential, as well. The geoaccumulation index and the overall pollution scores indicated that the highest environmental risk was related to Cd. Different statistical analyses were used to study the spatial patterns of soil Cd and their connections with pollution sources. The variogram was estimated using a classical approach (weighted least squares) and was compared with that of the posterior summaries that resulted from the Bayesian technique, which lay within the 95% Bayesian credible quantile intervals (BIC) of posterior parameter distributions. The prediction of cadmium values at un-sampled locations was implemented by multi-Gaussian kriging and sequential Gaussian simulation methods. The prediction maps showed that the region most contaminated by Cd was the north-eastern part of the study area, which was linked to mining activities, while agricultural influence contributed less in this respect.
Afficher plus [+] Moins [-]Increased risk of phthalates exposure for recurrent pregnancy loss in reproductive-aged women Texte intégral
2018
Liao, Kai-Wei | Guo, Baolin | Huang, Han-Bin | Chang, Jung-Wei | Chiang, Hung-Che | Huang, Po-Chin
Recurrent pregnancy loss (RPL) is the termination of pregnancies, usually before 20 weeks of gestation, and is defined as the loss of two or more pregnancies. In Taiwan, after 2011 di-2-ethylhexyl phthalate (DEHP) exposure episode, more reproductive-aged women still expose to high levels of DEHP and di-butyl phthalate (DBP) than have women of other age groups. Phthalates might be involved in the RPL pathogenesis. This study assessed the association of phthalate exposure with RPL risk in reproductive-aged Taiwanese women.This study recruited 103 patients diagnosed by a physician with RPL of unknown etiology and 76 controls from the Department of Obstetrics and Gynecology at a medical center in southern Taiwan between August 2013 and August 2017. Urine samples were analyzed for 11 phthalate metabolites through liquid chromatography–tandem mass spectrometry; subsequently, principal component analysis (PCA) and hierarchical clustering analysis were performed to determine the main sources of phthalate exposure. Finally, multivariate logistic regression was used to determine the RPL risk.The creatinine-unadjusted median levels of mono-iso-butyl phthalate (MiBP), mono-n-butyl phthalate (MnBP), mono-(2-ethyl-5-hydroxyhexyl) phthalate (MEHHP), and mono-(2-ethyl-5-carboxypentyl) phthalate (MECPP) in RPL/control were 9.8/5.3, 27.2/13.1, 11.4/8.1, and 12.9/9.5 ng/mL, respectively; furthermore, ΣDBPm and ΣDEHPm in RPL/control were 0.18/0.10 and 0.15/0.12 nmol/mL, respectively. PCA revealed three primary components of phthalate exposure: diethyl phthalates (DEP), DEHP, and DBP. Plastic food container use and medication were identified as the main phthalate exposure sources. After adjustment for potential confounding factors (urinary creatinine, age, age at menarche, education, and plastic food container use), we found that the urinary level of ΣDBPm was significantly associated with elevated risk for RPL (OR = 2.85, p = 0.045).Our findings supported the hypothesis that exposure to phthalates increases RPL risk. The development of a strategy to reduce phthalate exposure among reproductive-aged women should be emphasized.
Afficher plus [+] Moins [-]Direct and potential risk assessment of exposure to volatile organic compounds for primary receptor associated with solvent consumption Texte intégral
2018
Wang, Di | Yu, Han | Shao, Xia | Yu, Hongbing | Nie, Lei
Rapid development of industrial production has stimulated the growth of consumption of raw and auxiliary materials including organic paints, among which volatile organic compounds (VOCs) are proved harmful to the population who inhale the polluted air based on epidemiologic studies. Therefore, new types of environment-friendly paints were developed to replace solvent-based paints (SBPs). Nevertheless, new types of paints containing VOCs failed to replace SBPs entirely due to certain disadvantages. Hence, five kinds of paints were employed in simulation experiments to assess the health risk of primary receptor including three kinds of water-based paints (WBPs) and two kinds of SBPs. Conclusions showed that mean TVOC concentration in breathing zone of primary receptor ranged from 9.5 to 13.6 mg/m³ and 3.4 × 10³ to 1.4 × 10⁴ mg/m³ for WBPs and SBPs, respectively. Assessments of non-cancer risk concluded that nearly one third quantified compounds exceeded corresponding thresholds for WBPs, and the maximum risk value was 101.33; for SBPs, the maximum risk value reached 50760.20, and twenty-two compounds exceeded the reference limits. The calculation of cancer risk values showed that seventeen compounds were higher than acceptable limit amongst which 1,2-dibromoethane had maximum values of 1.27 × 10⁻² to 3.24 × 10⁻² for WBPs; for SBPs, all quantified compounds exceeded the acceptable limit, and 82.61% VOCs were distributed in a scope larger than 1 × 10⁻³. Additionally, a removal efficiency of 60% was considered for primary receptor with personal protective equipment, and subsequent results confirmed its inability of lowering the risk resulted from hazardous VOCs. The calculated potential health risk could be applied to estimate the total health risk for both primary and secondary receptor based on consumed materials. The finding suggested that WBPs could improve VOCs exposure condition and reduce the direct and potential health risk significantly for primary receptor, although they might dissatisfy acceptable limit.
Afficher plus [+] Moins [-]Transcriptomic analysis of zebrafish (Danio rerio) embryos to assess integrated biotoxicity of Xitiaoxi River waters Texte intégral
2018
Zhou, Shengli | Wei, Zheng | Chu, Tianyi | Yu, Haiyan | Li, Shuying | Zhang, Wei | Gui, Wenjun
Assessing the toxicity posed by mixtures of unknown chemicals to aquatic organisms is challenging. In this study, water samples from six cross-sections along the Xitiaoxi River Basin (XRB) were monthly or bimonthly collected in 2014. The year-period physiochemical parameters as well as one-month-water sample based acute biotoxicity tests showed that the river water quality of the year was generally in a good status. High performance liquid chromatography (HPLC) screening based on one-month-water samples suggested that the organic pollutants might be non-to-moderately-polar chemicals in very low concentrations. One-month-water sample based RNA-seq was performed to measure the mRNA differential expression profile of zebrafish larvae to furtherly explore the potential bioeffect and the spatial water quality change of the river. Result indicated that the number of deferentially expressed genes (DEGs) tended to increase along the downstream direction of the river. Gene ontology (GO) enrichment analysis implied that the key pollutants might mainly be the function disruptors of biological processes. Principle components analysis (PCA) combining with transcripts and one-month-water sample based physiochemical parameters indicated that the pollution might be similar at TP, DP and CTB sites while pollution homology existed on some extent between YBQ and JW sites. Although the water quality of the river had a complex time-space alternation during the year, and the one-month-data based RNA-seq could not reflex the whole year-water quality of a watershed, the gene expression profile via RNA-seq provided an alternative way for assessing integrated biotoxicity of surface water, and it was relatively fit for early-warning of water quality of a watershed with unobservable acute toxicity. However, the identification of detail toxicants and the links between DEGs and pollution level as well as physiological-biochemical toxicity needed further investigation.
Afficher plus [+] Moins [-]Unraveling microbial turnover and non-extractable residues of bromoxynil in soil microcosms with 13C-isotope probing Texte intégral
2018
Nowak, Karolina M. | Telscher, Markus | Seidel, Erika | Miltner, Anja
Bromoxynil is a widely used nitrile herbicide applied to maize and other cereals in many countries. To date, still little is known about bromoxynil turnover and the structural identity of bromoxynil non-extractable residues (NER) which are reported to occur in high amounts. Therefore, we investigated the microbial turnover of ¹³C-labeled bromoxynil for 32 days. A focus was laid on the estimation of biogenic NER based on the turnover of ¹³C into amino acids (AA). At the end, 25% of ¹³C₆-bromoxynil equivalents were mineralized, 2% assigned to extractable residues and 72.5% to NER. Based on 12% in the ¹³C-total AA and an assumed share of AA of 50% in microbial biomass we arrived at 24% of total ¹³C-biogenic NER. About 33% of the total ¹³C-NER could thus be explained by ¹³C-biogenic NER; 67% was unknown and by definition xenobiotic NER with potential for toxicity. The ¹³C label from ¹³C₆-bromoxynil was mainly detected in the humic acids (28.5%), but significant amounts were also found in non-humics (17.6%), fulvic acids (13.2%) and humins (12.7%). The ¹³C-total amino acids hydrolyzed from humic acids, humins and fulvic acids amounted to 5.2%, 6.1% and 1.2% of ¹³C₆-bromoxynil equivalents, respectively, corresponding to total ¹³C-biogenic NER amounts of 10.4%, 12.2% and 2.4%. The humins contained mostly ¹³C-biogenic NER, whereas the humic and fulvic acids may be dominated by the xenobiotic NER. Due to the high proportion of unknown ¹³C-NER and particularly in the humic and fulvic acids, future studies should focus on the detailed characterization of these fractions.
Afficher plus [+] Moins [-]Surface water flooding, groundwater contamination, and enteric disease in developed countries: A scoping review of connections and consequences Texte intégral
2018
Andrade, L. | O'Dwyer, J. | O'Neill, E. | Hynds, P.
Significant volumes of research over the past four decades has sought to elucidate the social, infrastructural, economic, and human health effects of climate change induced surface flooding. To date, epidemiological and public health studies of flooding events have focused on mental health effects, vector-borne diseases, and infectious enteric disease due to floodwater contact (i.e. typically low consumption rates). The inherent nature of groundwater (i.e. out of sight, out of mind) and the widely held belief that aquifers represent a pristine source of drinking water due to natural attenuation may represent the “perfect storm” causing direct consumption of relatively large volumes of surface flood-contaminated groundwater. Accordingly, the current study sought to systematically identify and synthesize all available peer-reviewed literature pertaining to the nexus between surface flooding, groundwater contamination and human gastroenteric outcomes. Just 14 relevant studies were found to have been published during the period 1980–2017, thus highlighting the fact that this potentially significant source of climate-related exposure to environmental infection has remained understudied to date. Studies differed significantly in terms of type and data reporting procedures, making it difficult to discern clear trends and patterns. Approximately 945 confirmed cases of flood-related enteric disease were examined across studies; these concurred with almost 10,000 suspected cases, equating to approximately 20 suspected cases per confirmed case. As such, no regional, national or global estimates are available for the human gastrointestinal health burden of flood-related groundwater contamination. In light of the demonstrable public health significance of the concurrent impacts of groundwater susceptibility and climate change exacerbation, strategies to increase awareness about potential sources of contamination and motivate precautionary behaviour (e.g. drinking water testing and treatment, supply interruptions) are necessary. Mainstreaming climate adaptation concerns into planning policies will also be necessary to reduce human exposure to waterborne sources of enteric infection.
Afficher plus [+] Moins [-]Photocatalytic degradation of DOM in urban stormwater runoff with TiO2 nanoparticles under UV light irradiation: EEM-PARAFAC analysis and influence of co-existing inorganic ions Texte intégral
2018
Zhao, Chen | Wang, Zhihua | Wang, Shuzhong | Li, Xiang | Wang, Chong-Chen
In situ photocatalytic degradation of dissolved organic matter (DOM) of stormwater runoff can efficiently improve the aquatic environment quality and relieve the wastewater treatment pressure. In this work, photocatalytic degradation of DOM in TiO₂ (AEROXIDE® P-25) photocatalyst under illumination of ultraviolet (UV) light was carried out, considering the influence of various factors like TiO₂ dosage, solution pH along with the existence of co-existing ions (Cu²⁺ and H₂PO₄⁻). Generally, the variations of dissolved organic carbon (DOC), UV-based parameters and peak intensities of fluorescent constituents with UV exposure time fitted perfectly with the pseudo-first-order kinetics model. The total DOM removal efficiency was affected by diversiform factors like adsorption capacity of TiO₂, UV light utilization efficiency, reactive free radicals produced and the influence of co-existing ions. The results of fluorescence excitation-emission matrix (EEM) coupled with parallel factor analysis (PARAFAC) modeling demonstrated that all the photodegradation rates for three identified fluorescent constituents (protein-like constituent 1 and 3, humic-like constituent 2) were faster than UV-absorbing chromophores, suggesting the DOM molecules in urban stormwater runoff contained much more π*-π transition structures. In addition, H₂PO₄⁻ ions affected the photodegradation of DOM by capturing positive holes (h⁺) and hydroxyl radical (·OH), whereas Cu²⁺ ions were inclined to generate Cu-protein complexes that were more difficult to degrade than the other Cu-DOM complexes. This study supplied novel insights into the photocatalytic degradation mechanism of individual organic constituent in urban stormwater runoff and explored the influences of co-existing contaminants on their adsorption-photocatalysis processes.
Afficher plus [+] Moins [-]Mercury and lead exposure in avian scavengers from the Pacific Northwest suggest risks to California condors: Implications for reintroduction and recovery Texte intégral
2018
Herring, Garth | Eagles-Smith, Collin A. | Varland, Daniel E.
Mercury (Hg) and lead (Pb) are widespread contaminants that pose risks to avian scavengers. In fact, Pb exposure is the primary factor limiting population recovery in the endangered California condor (Gymnogyps californianus) and Hg can impair avian reproduction at environmentally relevant exposures. The Pacific Northwest region of the US was historically part of the condor's native range, and efforts are underway to expand recovery into this area. To identify potential threats to reintroduced condors we assessed foraging habitats, Hg and Pb exposure, and physiological responses in two surrogate avian scavenger species (common ravens [Corvus corax] and turkey vultures [Cathartes aura] across the region between 2012 and 2016. Mercury exposure near the Pacific coast was 17–27-fold higher than in inland areas, and stable carbon and sulfur isotopes ratios indicated that coastal scavengers were highly reliant on marine prey. In contrast, Pb concentrations were uniformly elevated across the region, with 18% of the birds exposed to subclinical poisoning levels. Elevated Pb concentrations were associated with lower delta-aminolevulinic acid dehydratase (δ-ALAD) activity, and in ravens there was an interactive effect between Hg and Pb on fecal corticosterone concentrations. This interaction indicated that the effects of Hg and Pb exposure on the stress axis are bidirectional, and depend on the magnitude of simultaneous exposure to the other contaminant. Our results suggest that condors released to the Pacific Northwest may be exposed to both elevated Hg and Pb, posing challenges to management of future condor populations in the Pacific Northwest. Developing a robust monitoring program for reintroduced condors and surrogate scavengers will help both better understand the drivers of exposure and predict the likelihood of impaired health. These findings provide a strong foundation for such an effort, providing resource managers with valuable information to help mitigate potential risks.
Afficher plus [+] Moins [-]A proposed methodology for impact assessment of air quality traffic-related measures: The case of PM2.5 in Beijing Texte intégral
2018
Fontes, Tânia | Li, Peilin | Barros, Nelson | Zhao, Pengjun
Air quality traffic-related measures have been implemented worldwide to control the pollution levels of urban areas. Although some of those measures are claiming environmental improvements, few studies have checked their real impact. In fact, quantitative estimates are often focused on reducing emissions, rather than on evaluating the actual measures’ effect on air quality. Even when air quality studies are conducted, results are frequently unclear.In order to properly assess the real impact on air quality of traffic-related measures, a statistical method is proposed. The method compares the pollutant concentration levels observed after the implementation of a measure with the concentration values of the previous year. Short- and long-term impact is assessed considering not only their influence on the average pollutant concentration, but also on its maximum level. To control the effect of the main confounding factors, only the days with similar environmental conditions are analysed. The changeability of the key meteorological variables that affect the transport and dispersion of the pollutant studied are used to identify and group the days categorized as similar. Resemblance of the pollutants' concentration of the previous day is also taken into account. The impact of the road traffic measures on the air pollutants’ concentration is then checked for those similar days using specific statistical functions.To evaluate the proposed method, the impact on PM₂.₅ concentrations of two air quality traffic-related measures (M1 and M2) implemented in the city of Beijing are taken into consideration: M1 was implemented in 2009, restricting the circulation of yellow-labelled vehicles, while M2 was implemented in 2014, restricting the circulation of heavy-duty vehicles. To compare the results of each measure, a time-period when these measures were not applied is used as case-control.
Afficher plus [+] Moins [-]Linking source characterisation and human health risk assessment of metals to rainfall characteristics Texte intégral
2018
Liu, An | Mummullage, Sandya | Ma, Yukun | Egodawatta, Prasanna | Ayoko, G. A. (Godwin A.) | Goonetilleke, Ashantha
Metals deposited on urban road surfaces and incorporated in stormwater runoff are discharged into receiving waters, influencing their quality and can pose human health risks. Effective design of stormwater treatment measures is closely dependent on the in-depth understanding of stormwater pollutant sources and the associated health risks. The study discussed in this paper has linked the sources of metals in stormwater runoff and the accompanying human health risk to rainfall characteristics. The study outcomes confirmed that the metal contributions to stormwater runoff from the primary sources were in the order of sea salt > soil > traffic. Although traffic contributes a relatively lower percentage to wash-off, the human health risks posed by traffic sourced metals were relatively much higher. This implies that traffic sources should receive particular attention in treating stormwater. These outcomes have the potential to contribute to enhancing effective source control measures in order to safeguard natural waterways from polluted road wash-off.
Afficher plus [+] Moins [-]