Affiner votre recherche
Résultats 1271-1280 de 4,926
Characterization of M4 carbine rifle emissions with three ammunition types
2019
Aurell, Johanna | Holder, Amara L. | Gullett, Brian K. | McNesby, Kevin | Weinstein, Jason P.
Muzzle emissions from firing an M4 carbine rifle in a semi-enclosed chamber were characterized for an array of compounds to provide quantitative data for future studies on potential inhalation exposure and rangeland contamination. Air emissions were characterized for particulate matter (PM) size distribution, composition, and morphology; carbon monoxide (CO); carbon dioxide (CO₂); energetics; metals; polycyclic aromatic hydrocarbons; and methane. Three types of ammunition were used: a “Legacy” (Vietnam-era) round, the common M855 round (no longer fielded), and its variant, an M855 round with added potassium (K)-based salts to reduce muzzle flash. Average CO concentrations up to 1500 ppm significantly exceeded CO₂ concentrations. Emitted particles were in the respirable size range with mass median diameters between 0.33 and 0.58 μm. PM emissions were highest from the M855 salt-added ammunition, likely due to incomplete secondary combustion in the muzzle blast caused by scavenging of combustion radicals by the K salt. Copper (Cu) had the highest emitted metal concentration for all three round formulations, likely originating from the Cu jacket on the bullet. Based on a mass balance analysis of each round's formulation, lead (Pb) was completely emitted for all three round types. This work demonstrated methods for characterizing emissions from gun firing which can distinguish between round-specific effects and can be used to initiate studies of inhalation risk and environmental deposition.
Afficher plus [+] Moins [-]A combined chemical/size fractionation approach to study winter/summer variations, ageing and source strength of atmospheric particles
2019
Canepari, S. | Astolfi, M.L. | Catrambone, M. | Frasca, D. | Marcoccia, M. | Marcovecchio, F. | Massimi, L. | Rantica, E. | Perrino, C.
We studied the size distribution of ions (Cl⁻, NO₃⁻, SO₄⁼, Na⁺, NH₄⁺, K⁺, Mg⁺⁺, Ca⁺⁺) and elements (As, Ba, Cd, Co, Cs, Cu, Fe, Li, Mn, Ni, Pb, Rb, Sb, Se, Sn, Sr, Ti, Tl, V, Zn) during the winter and summer seasons of seven consecutive years (2008–2014) in an area of the Po Valley (Northern Italy) characterised by industrial, agricultural and urban settings. The study included the collection and analysis of 41 series of size-segregated samples (MOUDI sampler, 10 stages, cut sizes from 0.18 to 18 μm). Ions were analysed by ion chromatography; elemental analysis was carried out by ICP-MS, by applying a chemical fractionation method able to increase the selectivity of PM source tracers.Our results indicate that important winter/summer variations occurred in both the concentration and size distribution of most PM components. These variations were explained in terms of variations in the strength of the prevailing sources of each component.The contribution of biomass burning for domestic heating was highlighted by the well-known tracer K⁺ but also by the soluble fraction of Rb, Cs and Li. Biomass burning contribution to atmospheric PM was mostly contained in the fine fraction, with a broad size-distribution from 0.18 to 1.8 μm. This source also appreciably increased the concentration of other elements in fine PM (As, Cd, Co, Mn, Pb, Sb, Sn).A few PM components (tracers of sea-spray, brake lining and some industries) did not show marked seasonal variations in concentration and size distribution. However, during winter, for brake lining and industry tracers we observed an upward shift in the dimension of fine particles and a downward shift in the dimension of coarse particles, due to the ageing of the air masses.
Afficher plus [+] Moins [-]Digestive solubilization of particle-associated arsenate by deposit-feeders: The roles of proteinaceous and surfactant materials
2019
Wu, Xing | Klerks, Paul L. | Yuan, Zidan | Zhu, Xiaochen | Ma, Xu | Zhang, Guoqing | Wang, Shaofeng | Jia, Yongfeng
Solubilization of arsenate in guts of deposit-feeders is a key process for their dietary uptake of arsenate from contaminated sediments. The present study explored this digestive solubilization with in vitro extraction experiments that quantified arsenic (As) release from substrates (natural sediment and As-enriched iron oxides) in the presence of various digestive agents (proteins, amino acids and surfactants collected from gut fluid of a sipunculan worm). To investigate potential mechanisms for the influence of digestive agents, analyses determined correlations between As and Fe concentrations, the size distribution of the As bound to the digestive agents, and the adsorption of the digestive agents on the substrates. Both the digestive surfactants and proteinaceous materials increased arsenate mobilization, with the surfactants enhancing the effects of the proteinaceous materials. Arsenate reduction and reductive dissolution of iron oxides were not observed and correlations between the concentrations of released As and Fe were weak. These findings indicate that dissolution release of Fe did not appear to be the main route by which the digestive agents mobilized particle-associated As. Most of the released As (>70%) was distributed in the <10 kDa fraction of the digestive agents, showing that the As mobilization was also not caused by complexation with proteins in the digestive agents. In contrast, adsorption of the digestive agents occurred along with the release of arsenate from the arsenate-rich substrates, suggesting that competitive adsorption was the mechanism by which the digestive agents mobilized sedimentary arsenate. Our work demonstrated that the presence of digestive surfactants significantly enhances arsenate availability during deposit feeding.
Afficher plus [+] Moins [-]Use of multiple regression models for predicting the formation of bromoform and dibromochloromethane during ballast water treatment based on an advanced oxidation process
2019
Zhang, Xiaoye | Tian, Yiping | Zhang, Xiaofang | Bai, Mindong | Zhang, Zhitao
Disinfection byproducts (DBPs) generated by ballast water treatment have become a concern worldwide because of their potential threat to the marine environment. Predicting the relative DBP concentrations after disinfection could enable better control of DBP formation. However, there is no appropriate method of evaluating DBP formation in a full-scale ballast water treatment system (BWTS). In this study, multiple regression models were developed for predicting the dibromochloromethane (DBCM) and bromoform (TBM) concentrations produced by an emergency BWTS using field experimental data from ballast water treatments conducted at Dalian Port, China. Six combinations of independent variables [including several water parameters and/or the total residual oxidant (TRO) concentration] were evaluated to construct mathematical prediction formulas based on a polynomial linear model and logarithmic regression model. Further, statistical analyses were performed to verify and determine the appropriate mathematical models for DBCM and TBM formation, which were ultimately validated using additional field experimental data. The polynomial linear model with four variables (temperature, salinity, chlorophyll, and TRO) and the logarithmic regression model with seven variables (temperature, salinity, dissolved oxygen, pH, turbidity, chlorophyll, and TRO) exhibited good reproducibility and could be used to predict the DBCM and TBM concentrations, respectively. The validation results indicated that the developed models could accurately predict DBP concentrations, with no significant statistical difference from the measured values. The results of this work could provide a theoretical basis and data reference for ballast water treatment control in engineering applications of emergency BWTSs.
Afficher plus [+] Moins [-]The influence of the open burning of agricultural biomass and forest fires in Thailand on the carbonaceous components in size-fractionated particles
2019
Phairuang, Worradorn | Suwattiga, Panwadee | Chetiyanukornkul, Thaneeya | Hongtieab, Surapa | Limpaseni, Wongpun | Ikemori, Fumikazu | Hata, Mitsuhiko | Furuuchi, Masami
Size-segregated ambient particles down to particles smaller than 0.1 μm (PM₀.₁) were collected during the year 2014–2015 using cascade air samplers with a PM₀.₁ stage, at two cities in Thailand, Bangkok and Chiang Mai. Their characteristics and seasonal behavior were evaluated based on the thermal/optical reflectance (IMPROVE_TOR) method. Diagnostic indices for their emission sources and the black carbon (BC) concentration were assessed using an aethalometer and related to the monthly emission inventory (EI) of particle-bound BC and organic carbon (OC) in order to investigate the contribution of agricultural activities and forest fires as well as agro-industries in Thailand. Monthly provincial EIs were evaluated based on the number of agricultural crops produced corresponding to field residue burning and the use of residues as fuel in agro-industries, and also on the number of hot spots from satellite images corresponding to the areas burned by forest fires. The ratio of char-EC/soot-EC describing the relative influence of biomass combustion to diesel emission was found to be in agreement with the EI of BC from biomass burning in the size range <1 μm. This was especially true for PM₀.₁, which usually tends to be indicative of diesel exhaust particles, and was shown to be very sensitive to the EI of biomass burning. In Chiang Mai, the northern part of Thailand, the forest fires located upwind of the monitoring site were found to be the largest contributor while the carbon behavior at the site in Bangkok was better accounted for by the EI of provinces in central Thailand including Bangkok and its surrounding provinces, where the burning of crop residues and the cultivation of sugarcane for sugar production are significant factors. This suggests that the influence of transportation of polluted air masses is important on a multi-provincial scale (100–200 km) in Thailand.
Afficher plus [+] Moins [-]In vitro and in vivo genotoxicity of oxygenated polycyclic aromatic hydrocarbons
2019
McCarrick, Sarah | Cunha, Virginia | Zapletal, Ondřej | Vondráček, Jan | Dreij, Kristian
Oxygenated polycyclic aromatic hydrocarbons (oxy-PAHs) are a group of environmental pollutants found in complex mixtures together with PAHs. In contrast to the extensively studied PAHs, which have been established to have mutagenic and carcinogenic properties, much less is known about the effects of oxy-PAHs. The present work aimed to investigate the genotoxic potency of a set of environmentally relevant oxy-PAHs along with environmental soil samples in human bronchial epithelial cells (HBEC). We found that all oxy-PAHs tested induced DNA strand breaks in a dose-dependent manner and some of the oxy-PAHs further induced micronuclei formation. Our results showed weak effects in response to the oxy-PAH containing subfraction of the soil sample. The genotoxic potency was confirmed in both HBEC and HepG2 cells following exposure to oxy-PAHs by an increased level of phospho-Chk1, a biomarker used to estimate the carcinogenic potency of PAHs in vitro. We further exposed zebrafish embryos to single oxy-PAHs or a binary mixture with PAH benzo[a]pyrene (B[a]P) and found the mixture to induce comparable or greater effects on the induction of DNA strand breaks compared to the sum of that induced by B[a]P and oxy-PAHs alone. In conclusion, oxy-PAHs were found to elicit genotoxic effects at similar or higher levels to that of B[a]P which indicates that oxy-PAHs may contribute significantly to the total carcinogenic potency of environmental PAH mixtures. This emphasizes further investigations of these compounds as well as the need to include oxy-PAHs in environmental monitoring programs in order to improve health risk assessment.
Afficher plus [+] Moins [-]Tungstate removal from aqueous solution by nanocrystalline iowaite: An iron-bearing layered double hydroxide
2019
Cao, Yaowu | Guo, Qinghai | Shu, Zhu | Jiao, Cong | Luo, Li | Guo, Wei | Zhao, Qian | Yin, Zuowei
Tungstate enrichment in aquatic systems may cause negative environmental and health effects. This study addresses tungstate removal from aqueous solution by nanocrystalline iowaite, an iron-bearing layered double hydroxide, which has not been used for treatment of tungstate-rich waters so far. Tungstate sorption experiments were conducted with various contact times, temperatures, initial tungstate concentrations (0.001–2 mM), and solution pH values (2–13), the results indicating that iowaite sorbed aqueous tungstate effectively and quickly, and the sorption maximum can be up to 71.9 mg/g. Moreover, the tungsten sorption capacity keeps nearly constant at a wide pH range from 3 to 11. Duo to its pH buffering effect, the alkaline conditions were generated by the addition of iowaite, which are favorable for the removal of aqueous tungstate because the polymerization of tungstate can be prohibited at alkaline pH values. Zeta potential, XRD and XPS analyses were employed to clarify the sorption mechanisms, and it was concluded that tungstate was sorbed via its exchange with the chloride originally intercalated into iowaite interlayers as well as its stronger inner-sphere complexation with the Fe atoms located in iowaite layers. Nanocrystalline iowaite is suitable for treating both tungstate-bearing natural waters with moderately high tungstate concentrations and industrial wastewaters extremely rich in tungstate.
Afficher plus [+] Moins [-]On the accuracy and potential of Google Maps location history data to characterize individual mobility for air pollution health studies
2019
Yu, Xiaonan | Stuart, Amy L. | Liu, Yang | Ivey, Cesunica E. | Russell, Armistead G. | Kan, Haidong | Henneman, Lucas R.F. | Sarnat, Stefanie Ebelt | Hasan, Samiul | Sadmani, Anwar | Yang, Xuchao | Yu, Haofei
Appropriately characterizing spatiotemporal individual mobility is important in many research areas, including epidemiological studies focusing on air pollution. However, in many retrospective air pollution health studies, exposure to air pollution is typically estimated at the subjects’ residential addresses. Individual mobility is often neglected due to lack of data, and exposure misclassification errors are expected. In this study, we demonstrate the potential of using location history data collected from smartphones by the Google Maps application for characterizing historical individual mobility and exposure. Here, one subject carried a smartphone installed with Google Maps, and a reference GPS data logger which was configured to record location every 10 s, for a period of one week. The retrieved Google Maps Location History (GMLH) data were then compared with the GPS data to evaluate their effectiveness and accuracy of the GMLH data to capture individual mobility. We also conducted an online survey (n = 284) to assess the availability of GMLH data among smartphone users in the US. We found the GMLH data reasonably captured the spatial movement of the subject during the one-week time period at up to 200 m resolution. We were able to accurately estimate the time the subject spent in different microenvironments, as well as the time the subject spent driving during the week. The estimated time-weighted daily exposures to ambient particulate matter using GMLH and the GPS data logger were also similar (error less than 1.2%). Survey results showed that GMLH data may be available for 61% of the survey sample. Considering the popularity of smartphones and the Google Maps application, detailed historical location data are expected to be available for large portion of the population, and results from this study highlight the potential of these location history data to improve exposure estimation for retrospective epidemiological studies.
Afficher plus [+] Moins [-]Joint effects of heatwaves and air quality on ambulance services for vulnerable populations in Perth, western Australia
2019
Patel, Dimpalben | Jian, Le | Xiao, Jianguo | Jansz, Janis | Yun, Grace | Lin, Ting | Robertson, Andrew
As the frequency, intensity, and duration of heatwaves increases, emergency health serviceutilization, including ambulance service, has correspondingly increased across the world. The negative effects of air pollution on health complicate these adverse health effects. This research work is the first known study to analyze the joint effects of heatwaves and air quality on the ambulance service in Western Australia (WA). The main objective is to investigate the potential joint effects of heatwaves and air quality on the ambulance service for vulnerable populations in the Perth metropolitan area. A time series design was used. Daily data on ambulance callouts, temperature and air pollutants (CO, SO₂, NO₂, O₃, PM₁₀ and PM₂.₅) were collected for the Perth metropolitan area, WA from 2006 to 2015. Poisson regression modeling was used to assess the association between heatwaves, air quality, and ambulance callouts. Risk assessments on age, gender, socio-economic status (SES), and joint effects between heatwaves and air quality on ambulance callouts were conducted. The ambulance callout rate was higher during heatwave days (14.20/100,000/day) compared to non-heatwave days (13.95/100,000/day) with a rate ratio of 1.017 (95% confidence interval 1.012, 1.023). The ambulance callout rate was higher in males, people over 60 years old, people with low SES, and those living in coastal areas during period of heatwaves. Exposure to CO, SO₂, O₃ and PM₂.₅ increased risk on ambulance callouts and exposure to NO₂ showed joint effect with heatwave and increased risk of ambulance callouts by 3% after adjustment of all other risk factors. Ambulance callouts are an important indicator for evaluating heatwave-related emergency morbidity in WA. As the median concentrations of air pollutants in WA were lower than the Australian National Standards, the interactive effects of heatwaves and air quality on ambulance service need to be further examined, especially when air pollutants exceed the standards.
Afficher plus [+] Moins [-]Associations of ambient fine particulate matter and its constituents with serum complement C3 in a panel study of older adults in China
2019
Bai, Lu | Zhao, Meiduo | Xu, Jing | Li, Ang | Luo, Kai | Li, Runkui | Yang, Mingan | Xu, Qun
Epidemiological studies have demonstrated association between the total mass of fine particulate matter (PM2.5) exposures and inflammation. There are few studies exploring the associations between PM2.5 constituents and the biomarkers of inflammation in older adults and the underlying biological mechanisms are not exact. In this study, we examined the associations between PM2.5 and its constituents (organic carbon (OC), elemental carbon (EC), total carbon (TC), polycyclic aromatic hydrocarbons (PAHs) and complement three factor (C3), an important biomarker of inflammation in a repeated panel of 175 older adults in Beijing, China. We have constructed three different linear mixed effect models (single-pollutant model, constituent-PM2.5 joint model, and constituent-residual model) to evaluate the association of PM2.5 and its constituents and complement C3, controlling for concentration of high sensitive C-reactive protein (hs-CRP), day of week, mean temperature, relative humidity, location and potential individual confounders. We found robust positive associations of OC, EC, TC, PAHs and PM2.5 mass concentration with complement C3 at different lag patterns. The cumulative effects of pollutants increased across average of 2–5 days. Individuals aged 65 and above, or with diabetes, or BMI ≥30, or with no-cardiopathy, or with hypertension also exhibited positive associations between PM2.5 and complement C3. The results revealed that short-term exposure to PM2.5 and its constituents could result in a significant increase in serum level of complement C3. These findings suggested a possible involvement of complement C3 in the effect of PM2.5 on inflammatory reaction.
Afficher plus [+] Moins [-]