Affiner votre recherche
Résultats 1281-1290 de 4,896
Concomitant occurrence of anthropogenic air pollutants, mineral dust and fungal spores during long-distance transport of ragweed pollen
2019
Grewling, Łukasz | Bogawski, Paweł | Kryza, Maciej | Magyar, Donat | Šikoparija, Branko | Skjøth, Carsten Ambelas | Udvardy, Orsolya | Werner, Małgorzata | Smith, Matt
Large-scale synoptic conditions are able to transport considerable amounts of airborne particles over entire continents by creating substantial air mass movement. This phenomenon is observed in Europe in relation to highly allergenic ragweed (Ambrosia L.) pollen grains that are transported from populations in Central Europe (mainly the Pannonian Plain and Balkans) to the North. The path taken by atmospheric ragweed pollen often passes through the highly industrialised mining region of Silesia in Southern Poland, considered to be one of the most polluted areas in the EU. It is hypothesized that chemical air pollutants released over Silesia could become mixed with biological material and be transported to less polluted regions further North. We analysed levels of air pollution during episodes of long-distance transport (LDT) of ragweed pollen to Poland. Results show that, concomitantly with pollen, the concentration of air pollutants with potential health-risk, i.e. SO₂, and PM₁₀, have also significantly increased (by 104% and 37%, respectively) in the receptor area (Western Poland). Chemical transport modelling (EMEP) and air mass back-trajectory analysis (HYSPLIT) showed that potential sources of PM₁₀ include Silesia, as well as mineral dust from the Ukrainian steppe and the Sahara Desert. In addition, atmospheric concentrations of other allergenic biological particles, i.e. Alternaria Nees ex Fr. spores, also increased markedly (by 115%) during LDT episodes. We suggest that the LDT episodes of ragweed pollen over Europe are not a “one-component” phenomenon, but are often related to elevated levels of chemical air pollutants and other biotic and abiotic components (fungal spores and desert dust).
Afficher plus [+] Moins [-]Microplastic in wild populations of the omnivorous crab Carcinus aestuarii: A review and a regional-scale test of extraction methods, including microfibres
2019
Piarulli, Stefania | Scapinello, Sara | Comandini, Paolo | Magnusson, Kerstin | Granberg, Maria | Wong, Joanne X.W. | Sciutto, Giorgia | Prati, Silvia | Mazzeo, Rocco | Booth, Andy M. | Airoldi, Laura
Microplastic (MP) has become ubiquitous in the marine environment. Its threat to marine organisms has been demonstrated under laboratory conditions, yet studies on wild populations still face methodological difficulties. We reviewed the methods used to separate MP from soft animal tissues and highlighted a lack of standardised methodologies, particularly critical for synthetic microfibres. We further compared enzymatic and a potassium hydroxide (KOH)-based alkaline digestion protocols on wild crabs (Carcinus aestuarii) collected from three coastal lagoons in the north Adriatic Sea and on laboratory-prepared synthetic polyester (PES) of different colour and polypropylene (PP). We compared the cost-effectiveness of the two methods, together with the potential for adverse quantitative or qualitative effects on MP that could alter the capability of the polymers to be recognised via microscopic or spectroscopic techniques. Only 5.5% of the 180 examined crabs contained MP in their gastrointestinal tracts, with a notably high quantitative variability between individuals (from 1 to 117 particles per individual). All MP found was exclusively microfibres, mainly PES, with a mean length (±SE) of 0.5 ± 0.03 mm. The two digestion methods provided comparable estimates on wild crabs and did not cause any visible physical or chemical alterations on laboratory-prepared microfibres treated for up to 4 days. KOH solution was faster and cheaper compared to the enzymatic extraction, involving fewer procedural steps and therefore reducing the risk of airborne contamination. With digestion times longer than 4 days, KOH caused morphological alterations of some of the PES microfibres, which did not occur with the enzymatic digestion. This suggests that KOH is effective for the digestion of small marine invertebrates or biological samples for which shorter digestion time is required, while enzymatic extraction should be considered as alternative for larger organisms or sample sizes requiring longer digestion times.
Afficher plus [+] Moins [-]Size spectra and source apportionment of fine particulates in tropical urban environment during southwest monsoon season
2019
Zong, Yichen | Botero, Maria L. | Yu, Liya E. | Kraft, Markus
In this study, we carried out high time-resolution measurements of particle number concentration and size distribution (5–1000 nm) in Singapore, which represents a tropical urban environment. The measurements were taken during the southwest monsoon season in 2017 using a fast-response differential mobility spectrometer at a sampling rate of 1 Hz. In the measurement, short-lived nucleation events were found prominent at early afternoon because of the abundant incoming radiation that enhances the photochemical reactions in atmosphere. For the first time in the region, a five-factor positive matrix factorization approach was applied to the size spectra data. Based on particle number concentration, two sources within nucleation mode (<30 nm) were resolved and account for 43% of total number concentration, which is higher than the available monitoring data in other big cities. Among the sources, O₃-related atmospheric photochemical reactions with peak size at 10–12 nm is a unique factor and prominent in early afternoon nucleation events. The findings of this work can serve as a baseline for assessing influence of local and cross-border airborne emissions during various seasons in the future.
Afficher plus [+] Moins [-]The hydro-fluctuation belt of the Three Gorges Reservoir: Source or sink of microplastics in the water?
2019
Zhang, Kai | Chen, Xianchuan | Xiong, Xiong | Ruan, Yuefei | Zhou, Hane | Wu, Chenxi | Lam, Paul K.S.
Reservoirs can be an important environmental compartment for microplastic pollution. Previous investigations have found that surface waters and sediments in the Three Gorges Reservoir (TGR) have had high microplastic abundance, and the Xiangxi River, which is one of the largest primary tributaries of the TGR, has had much higher microplastic abundance than several marine and freshwater systems in China. A strip of land on the bank of the reservoir area, which is called the hydro-fluctuation belt (HFB), is periodically exposed due to the special hydrodynamic conditions in the TGR. The HFB may be an important source and/or sink of microplastics in TGR. In this study, microplastic occurrence in sediments from the Xiangxi River HFB was investigated to reflect the local microplastic pollution status and to evaluate its potential to serve as a source/sink of microplastics in the TGR. Seven sampling sites were selected, and sediments within the HFB and above the belt were collected in summer when the water level was low. The results showed that the microplastic abundance ranged from 0.55 ± 0.12 × 10³ to 14.58 ± 5.67 × 10³ particles m⁻², which was one to two orders of magnitude higher than that in sediments from the Xiangxi River in our previous study (80–846 particles m⁻²). Statistical analysis revealed that the microplastic abundance within the HFB was significantly higher than that of the area above the HFB. The results indicate that the HFB can be an important microplastic sink when the water level is low, and the belt can turn into a potential source when the water level is high. Cluster analysis was applied to reveal the characteristics of the microplastics collected at different sites, and the results suggest that the cluster analysis may be a useful tool in elucidating the source and fate of microplastics.
Afficher plus [+] Moins [-]Source contribution analysis of mercury deposition using an enhanced CALPUFF-Hg in the central Pearl River Delta, China
2019
Xu, Hui | Zhu, Yun | Wang, Long | Lin, Che-Jen | Jang, Carey | Zhou, Qin | Yu, Bin | Wang, Shuxiao | Xing, Jia | Yu, Lian
Atmospheric mercury (Hg) poses human health and ecological risks once deposited and bio-accumulated through food chains. Source contribution analysis of Hg deposition is essential to formulating emission control strategies to alleviate the adverse impact of Hg release from anthropogenic sources. In this study, a Hg version of California Puff Dispersion Modeling (denoted as CALPUFF-Hg) system with added Hg environmental processes was implemented to simulate the Hg concentration and deposition in the central region of the Pearl River Delta (cPRD) at 1 km × 1 km resolution. The contributions of eight source sectors to Hg deposition were evaluated. Model results indicated that the emission from cement production was the largest contributor to Hg deposition, accounting for 13.0%, followed by coal-fired power plants (6.5%), non-ferrous metal smelting (5.4%), iron and steel production (3.5%), and municipal solid waste incineration (3.4%). The point sources that released a higher fraction of gaseous oxidized mercury, such as cement production and municipal solid waste incineration, were the most significant contributors to local deposition. In this intensive industrialized region, large point sources contributed 67–94% of total Hg deposition of 6 receptors which were the nearest grid-cells from top five Hg emitters of the domain and the largest municipal solid waste incinerator in Guangzhou. Based on the source apportionment results, cement production and the rapidly growing municipal solid waste incineration are identified as priority sectors for Hg emission control in the cPRD region.
Afficher plus [+] Moins [-]Experimental and numerical study on heavy metal contaminant migration and retention behavior of engineered barrier in tailings pond
2019
He, Yong | Li, Bing-bing | Zhang, Ke-neng | Li, Zhen | Chen, Yong-gui | Ye, Wei-min
Heavy metal pollution is a serious environmental problem globally, particularly in mines and tailings ponds. In this study, based on laboratory and field tests, the migration of heavy metal contaminants in a tailings pond and the retention behavior of a compacted bentonite engineered barrier system on the heavy metal contaminants were analyzed by a numerical simulation. The results demonstrate that the hydraulic conductivity of compacted bentonite is lower than that of the tailings from the laboratory tests. The hydraulic conductivity of the tailings sand decreased with an increase in the dry density and increased with an increase in the concentration of the chemical solution, which could be attributed to the large amounts of fine-grained soil contained in the tailings, according to the grain size distribution test. The hydraulic conductivity of the tailings from the engineering geological survey was between 2.0 × 10−6 and 9.0 × 10−5 m/s, and followed the order: tail coarse sand > tail silty sand > tail medium sand > tail fine silt. The numerical simulation of the seepage could satisfactorily describe the actual working condition of the tailings dam. With the groundwater seepage, the migration range of the heavy metal contaminant in the researched tailings pond reached a maximum of 45 m for 5 years. The retention efficiencies of the 0.2 m engineered barrier against the heavy metal contaminant for 15 and 30 years were 45.4% and 57.2%, respectively. Moreover, the retention efficiency would exceed 87% when the engineered barrier thickness is increased to 0.5 m. The results of model validation show that the calculated results are in good agreement with the measured ones. These findings can provide effective ideas for the prevention and control of environmental pollution in mines and tailings ponds.
Afficher plus [+] Moins [-]Roundup® confers cytotoxicity through DNA damage and Mitochondria-Associated apoptosis induction
2019
Hao, Youwu | Chen, Hui | Xu, Wenping | Gao, Jufang | Yang, Yun | Zhang, Yang | Tao, Liming
Glyphosate-based herbicides (GBH) are the most widely used pesticides in the world. The extensive use of them increases the potential human health risk, including the human inhalation toxicity risk. We studied the effect of the most famous GBH Roundup® (RDP) in the concentration range from 50 to 125 μg/mL on Mitochondria-Associated apoptosis and DNA damage in Human alveolar carcinoma cells (A549 cells). Alkaline comet assay, immunofluorescence assay and Flow Cytometric Analysis assay were employed to detect DNA damages and apoptosis of A549 cells. We found RDP caused concentration-dependent increases in DNA damages and proportion of apoptotic cells in A549 cells. RDP induced the DNA single-strand breaks and double-strand breaks; the collapse of mitochondrial membrane by increasing Bax/Bcl-2, resulting in the release of cytochrome c into cytosol and then activated caspase-9/-3, cleaved poly (ADP-ribose) polymerase (PARP) in human lung tissue cells. The results demonstrate that RDP can induce A549 cells cytotoxic effects in vitro at the concentration lower than the occupational exposures level of workers, which means RDP has a potential threat to human health.
Afficher plus [+] Moins [-]Effect of calcination on structure and photocatalytic property of N-TiO2/g-C3N4@diatomite hybrid photocatalyst for improving reduction of Cr(Ⅵ)
2019
Sun, Qing | Hu, Xiaolong | Zheng, Shuilin | Zhang, Jian | Sheng, Jiawei
The N-TiO2/g-C3N4@diatomite (NTCD) composite has been prepared through a simple impregnation method, using titanium tetrachloride as precursor and urea as nitrogen-carbon source. Then the effects of calcination temperature on structure, surface property and photocatalytic activity of the catalysts were investigated. And XRD, TEM, XPS, FTIR and UV–vis diffuse adsorption spectroscopy were used to characterize the obtained powders. The photocatalytic activity of the NTCD was evaluated through the reduction of aqueous Cr (VI) under visible light irradiation (λ > 400 nm). The results demonstrated that the nano-TiO2 particles ranging from 15 to 30 nm in the crystal of anatase are well deposited on the surface of diatomite in the NTCD-500 which calcined at 500 °C for 2 h. Furthermore, the g-C3N4 with the lay thickness of 0.92 nm was attached to the surface of nano-TiO2. The N-doped TiO2 and g-C3N4 doped catalysts could co-enhance response in the visible light region and reduce band gap of NTCD-500 (Eg = 3.07 eV). And the NTCD-500 sample exhibited nearly 100% removal rate within 5 h for photocatalytic reduction of Cr (VI) which was higher activity than P25, crude TiO2@diatomite and g-C3N4@diatomite.
Afficher plus [+] Moins [-]Fine particulate matter (PM2.5) aggravates apoptosis of cigarette-inflamed bronchial epithelium in vivo and vitro
2019
Zhou, Tianyu | Hu, Yan | Wang, Yunxia | Sun, Chao | Zhong, Yijue | Liao, Jiping | Wang, Guangfa
Fine particulate matter (PM₂.₅) is an essential risk factor of chronic obstructive pulmonary disease (COPD). Recent studies showed weak association between PM₂.₅ and COPD incidence, but smokers who exposed to higher PM₂.₅ concentration had more opportunity to gain COPD. Cigarette smoking is the most important risk factor of COPD. Thus, we hypothesized: the role of PM₂.₅ played on cigarette-inflamed airways was more significant than normal airways. The study firstly established an animal model of C57BL/6J mice with cigarette smoke exposure and PM₂.₅ orotracheal administration. After calculating pathological scores, mean linear intercept and mean alveolar area, we found PM₂.₅ aggravated pathological injury of cigarette-inflamed lungs, but the injury on normal lungs was not significant. Meanwhile, inflammatory factors as T-bet, IFN-γ and IL-1α were tested using qRT-PCR and ELISA. The results showed PM₂.₅ aggravated inflammation of cigarette-inflamed lungs, but the effect on normal lungs was not significant. The most important pathogenesis of COPD is abnormal apoptosis in airway epithelium, due to oxidative stress following long-term exposure to cigarette smoke. Then, apoptotic responses were detected in lungs. TUNEL analysis demonstrated that PM₂.₅ promoted DNA fragmentation of cigarette-inflamed lungs, but the effect on normal lungs was not significant. Western-blot and immunohistochemistry showed caspase activated significantly in PM₂.₅-cigarette smoke exposed lungs and activated caspase 3 located mainly on bronchial epithelium. Next, human bronchial epithelial cells were cultured treated with cigarette smoke solution (CSS) with or without PM₂.₅. Z-VAD-FMK, a pan-caspase inhibitor, was used to suppress the activation of caspases. After analyzing cell viability, DNA fragmentation, mitochondrial activities and caspase activities, the results clarified that PM₂.₅ aggravated apoptosis in cigarette-inflamed bronchial epithelial cells and the responses could be suppressed by Z-VAD-FMK. Our results gave a new idea about the mechanism of PM₂.₅ on COPD and inferred cigarette-inflamed airways were more vulnerable to PM₂.₅ than normal airways.
Afficher plus [+] Moins [-]Residential and school greenspace and academic performance: Evidence from the GINIplus and LISA longitudinal studies of German adolescents
2019
Markevych, Iana | Feng, Xiaoqi | Astell-Burt, Thomas | Standl, Marie | Sugiri, Dorothea | Schikowski, Tamara | Koletzko, Sibylle | Herberth, Gunda | Bauer, Carl-Peter | von Berg, Andrea | Berdel, Dietrich | Heinrich, Joachim
Few studies have reported the association between greenspace and academic performance at school level. We examined associations between both residential and school greenspace and individual school grades in German adolescents.German and maths grades from the latest school certificate, residential and school greenspace, and covariates were available for 1351 10 and 15 years old Munich children and 1078 Wesel children from two German birth cohorts – GINIplus and LISA. Residential and school greenspace was assessed by the Normalized Difference Vegetation Index (NDVI), tree cover, and (in Munich only) proportion of agricultural land, forest, and urban green space in 500-m and 1000-m circular buffers. Longitudinal associations between each exposure-outcome pair were assessed by logistic mixed effects models with person and school as random intercepts and adjusted for potential confounders.No associations were observed between any of the greenspace variables and grades in Wesel children. Several statistically significant associations were observed with German and maths grades in Munich children, however associations were inconsistent across sensitivity analyses.There is no evidence of an association of higher greenspace at residence, school or combined with improved academic performance in German adolescents from the GINIplus and LISA longitudinal studies.
Afficher plus [+] Moins [-]