Affiner votre recherche
Résultats 1281-1290 de 7,288
A decade of CO2 flux measured by the eddy covariance method including the COVID-19 pandemic period in an urban center in Sakai, Japan Texte intégral
2022
Ueyama, Masahito | Takano, Tsugumi
Cities constitute an important source of greenhouse gases, but few results originating from long-term, direct CO₂ emission monitoring efforts have been reported. In this study, CO₂ emissions were quasi-continuously measured in an urban center in Sakai, Osaka, Japan by the eddy covariance method from 2010 to 2021. Long-term CO₂ emissions reached 22.2 ± 2.0 kg CO₂ m⁻² yr⁻¹ from 2010 to 2019 (± denotes the standard deviation) in the western sector from the tower representing the densely built-up area. Throughout the decade, the annual CO₂ emissions remained stable. According to an emission inventory, traffic emissions represented the major source of CO₂ emissions within the flux footprint. The interannual variations in the annual CO₂ flux were positively correlated with the mean annual traffic counts at two highway entrances and exits. The CO₂ emissions decreased suddenly, by 32% ± 3.1%, in April and May 2020 during the period in which the first state of emergency associated with COVID-19 was declared. The annual CO₂ emissions also decreased by 25% ± 3.1% in 2020. Direct long-term observations of CO₂ emissions comprise a useful tool to monitor future emission reductions and sudden disruptions in emissions, such as those beginning in 2020 during the COVID-19 pandemic.
Afficher plus [+] Moins [-]Sediment nitrogen contents controlled by microbial community in a eutrophic tributary in Three Gorges Reservoir Texte intégral
2022
Lv, Kun | Guo, Xiaojuan | Wang, Congfeng | Su, Qingqing | Liu, Defu | Xiao, Shangbin | Yang, Zhengjian
Nitrogen pollution caused serious environmental problems in reservoir ecosystems. Reducing nitrogen pollution by enhancing nitrogen removal in river sediments deserved intensive research. Distributions of nitrogen contents in sediment-water interface were characterized along the Xiangxi bay (XXB), a eutrophic tributary in Three Gorges Reservoir, China. More than 47% of total Kjeldahl nitrogen (TKN) and 67% of total organic nitrogen (TON) were degraded during burial. Higher TN, TON and NH₄⁺ consuming at downstream sites indicated stronger nitrogen mineralization and release due to higher turbulence of the overlying density currents. Nitrifying bacteria, denitrifying bacteria, anaerobic ammonium oxidizing (anammox) bacteria and nitrite/nitrate-dependent anaerobic methane oxidation (N-DAMO) bacteria were detected in nitrate-ammonium transition zone. Nitrogen contents transitions were responded to microbial stakeholders indicated microbially mediated nitrogen cycling in sediments. The dissolved oxygen and nitrate availabilities were the key limits of denitrification and associated reactions. These results suggested microbial mediated nitrogen cycling processes in sediments were critical for nitrogen removal in aquatic ecosystems, and replenishing dissolved oxygen and nitrate was expected to enhance sediment denitrification and strengthen potential environmental self-purification.
Afficher plus [+] Moins [-]Current progress in treatment technologies for plastic waste (bisphenol A) in aquatic environment: Occurrence, toxicity and remediation mechanisms Texte intégral
2022
Kataria, Navish | Bhushan, Divya | Gupta, Renuka | Rajendran, Saravanan | Mun Teo, Michelle Yee | Khoo, Kuan Shiong
Bisphenol-A (BPA) is a type of Endocrine Disrupting Compound (EDC) that is being widely used in the production of polycarbonate and epoxy resins. Last few years, the human exposure to BPA has been extensively high due to continuous increment in Annual Growth Rate (AGR) of BPA global market. The presence and transportation of BPA in the environment could cause serious damage to the aquatic life and human health. In this paper, we have reviewed the literature on the exposure and toxicity mechanism of BPA and advanced analytical techniques for detection of BPA in environment and human beings. The study indicated that BPA can cause damaging effects on numerous tissues and organs, including reproductive system, metabolic dysfunction, respiratory system, immune system and central nervous system. On the basis of reported studies on animal indicates that the exposure of BPA can be the carcinogenic and responsible for causing a variety of cancers like ovarian cancer, uterine cancer, prostate cancer, testicular cancer and liver cancer. This review paper mainly focused on current progress in BPA removal technologies in last ten years (2012–2022). This paper presenting the comprehensive overview of individual removal technology including-adsorption, photocatalysis/photodegradation, ozonation/advance oxidation, photo-fenton, membrane/nanofilters, and biodegradation along with removal mechanism. The extensive literature study shows that each technology has its own removal mechanism and limitation in BPA treatment. In adsorption and membrane separation process, most of BPA has been treated by electrostatic interaction, hydrogen boning and π-π interations mechanism. Whereas in degradation mechanism, O* and OH* species has been played major role in BPA removal. Some factors could be altered the removal potential and efficiency of BPA removal. This review paper will provide a useful guide in providing directions for future investigation to address the problem of BPA-containing wastewater treatment.
Afficher plus [+] Moins [-]Pristine and sulfidized ZnO nanoparticles alter microbial community structure and nitrogen cycling in freshwater lakes Texte intégral
2022
Bao, Shaopan | Xiang, Dongfang | Xue, Lu | Xian, Bo | Tang, Wei | Fang, Tao
Zinc oxide nanoparticles (ZnO NPs) and its sulfidized form (ZnS NPs) are increasingly entering into freshwater systems through multiple pathways. However, their impacts on the composition and function of sedimentary microbial communities are still largely unknown. Here, two kinds of lake-derived microcosms were constructed and incubated with ZnO NPs, or ZnS NPs to investigate the short-term (7 days) and long-term (50 days) impacts on sedimentary microbial communities and nitrogen cycling. After 7 days, both ZnO NPs and ZnS NPs dosed microbial communities experienced distinct alterations as compared to the undosed controls. By day 50, the structural shifts of microbial communities caused by ZnO NPs were significantly enlarged, while the microbial shifts induced by ZnS NPs were largely resolved. Additionally, ZnO NPs and ZnS NPs could significantly alter nitrogen species and nitrogen cycling genes in sediments, revealing their non-negligible impacts on nitrogen cycling processes. Furthermore, our data clearly indicated that the impacts of ZnO NPs and ZnS NPs on nitrogen cycling differed distinctly in different lake-derived microcosms, and the impacts were significantly correlated with microbial community structure. Overall, this research suggests that the entrance of pristine or sulfidized ZnO NPs into freshwater systems may significantly impact the sedimentary microbial community structure and nitrogen cycling.
Afficher plus [+] Moins [-]Man-made natural and regenerated cellulosic fibres greatly outnumber microplastic fibres in the atmosphere Texte intégral
2022
Finnegan, Alexander Matthew David | Süsserott, Rebekah | Gabbott, Sarah E. | Gouramanis, Chris
Atmospheric microplastics have been widely reported in studies around the world. Microfibres are often the dominant morphology found by researchers, although synthetic (i.e., plastic) microfibres are typically just a fraction of the total number of microfibres, with other, non-synthetic, cellulosic microfibres frequently being reported. This study set out to review existing literature to determine the relative proportion of cellulosic and synthetic atmospheric anthropogenic (man-made) microfibres, discuss trends in the microfibre abundances, and outline proposed best-practices for future studies. We conducted a systematic review of the existing literature and identified 33 peer-reviewed articles from Scopus and Google Scholar searches that examined cellulosic microfibres and synthetic microfibres in the atmosphere. Multiple analyses indicate that cellulosic microfibres are considerably more common than synthetic microfibres. FT-IR and Raman spectroscopy data obtained from 24 studies, showed that 57% of microfibres were cellulosic and 23% were synthetic. The remaining were either inorganic, or not determined. In total, 20 studies identified more cellulosic microfibres, compared to 11 studies which identified more synthetic microfibres. The data show that cellulosic microfibres are 2.5 times more abundant between 2016 and 2022, however, the proportion of cellulosic microfibres appear to be decreasing, while synthetic microfibres are increasing. We expect a crossover to happen by 2030, where synthetic microfibres will be dominant in the atmosphere. We propose that future studies on atmospheric anthropogenic microfibres should include information on natural and regenerated cellulosic microfibres, and design studies which are inclusive of cellulosic microfibres during analysis and reporting. This will allow researchers to monitor trends in the composition of atmospheric microfibers and will help address the frequent underestimation of cellulosic microfibre abundance in the atmosphere.
Afficher plus [+] Moins [-]Polystyrene microplastics up-regulates liver glutamine and glutamate synthesis and promotes autophagy-dependent ferroptosis and apoptosis in the cerebellum through the liver-brain axis Texte intégral
2022
Yin, Kai | Wang, Dongxu | Zhao, Hongjing | Wang, Yu | Zhang, Yue | Liu, Yachen | Li, Baoying | Xing, Mingwei
Microplastics (MPs), which are emerging environmental pollutants, remain uncertainties in their toxic mechanism. MPs have been linked to severe liver metabolic disorders and neurotoxicity, but it is still unknown whether the abnormal metabolites induced by MPs can affect brain tissue through the liver-brain axis. Exposed to MPs of chickens results in liver metabolic disorders and increased glutamine and glutamate synthesis. The relative expression of glutamine in the C group was −0.862, the L-PS group was 0.271, and the H-PS group was 0.592. The expression of tight junction proteins in the blood-brain barrier (BBB) was reduced by PS-MPs. Occludin protein expression decreased by 35.8%–41.2%. Claudin 3 decreased by 19.6%–42.3%, and ZO-1 decreased by 28.3%–44.6%. Excessive glutamine and glutamate cooperated with PS-MPs to inhibit the Nrf2-Keap1-HO-1/NQO1 signaling pathway and triggered autophagy-dependent ferroptosis and apoptosis. GPX protein expression decreased by 30.9%–38%. LC3II/LC3I increased by 54%, and Caspase 3 increased by 45%. Eventually, the number of Purkinje cells was reduced, causing neurological dysfunction. In conclusion, this study provides new insights for revealing the mechanism of nervous system damaged caused by PS-MPs exposed in chickens.
Afficher plus [+] Moins [-]Comparison between machine linear regression (MLR) and support vector machine (SVM) as model generators for heavy metal assessment captured in biomonitors and road dust Texte intégral
2022
Salazar-Rojas, Teresa | Cejudo-Ruiz, Fredy Ruben | Calvo-Brenes, Guillermo
Exposure to suspended particulate matter (PM), found in the air, is one of the most acute environmental problems that affect the health of modern society. Among the different airborne pollutants, heavy metals (HMs) are particularly relevant because they are bioaccumulated, impairing the functions of living beings. This study aimed to establish a method to predict heavy metal concentrations in leaves and road dust, through their magnetic properties measurements. For this purpose, machine learning, automatic linear regression (MLR), and support vector machine (SVM) were used to establish models for the prediction of airborne heavy metals based on leaves and road dust magnetic properties. Road dust samples and leaves of two common evergreen species (Cupressus lusitanica/Casuarina equisetifolia) were sampled simultaneously during two different years in the Great Metropolitan Area (GMA) of Costa Rica. MLR and SVM algorithms were used to establish the relationship between airborne heavy metal concentrations based on single (χlf) and multiple (χlf y χdf) leaf magnetic properties and road dust. Results showed that Fe, Cu, Cr, V, and Zn concentrations were well-simulated by SVM prediction models, with adjusted R² values ≥ 0.7 in both training and test stages. By contrast, the concentrations of Pb and Ni were not well-simulated, with adjusted R² values < 0.7 in both training and test stages. Heavy metal predicción models using magnetic properties of leaves from Casuarina equisetifolia, as collectors, yielded better prediction results than those based on the leaves of Cupressus lusitanica and road dust, showing relatively higher adjusted R² values and lower errors (MAE and RMSE) in both training and test stages. SVM proved to be the best prediction model with variations between single (χlf) and multiple (χlf y χdf) magnetic properties depending on the element studied.
Afficher plus [+] Moins [-]Historical and current occurrence of microplastics in water and sediment of a Finnish lake affected by WWTP effluents Texte intégral
2022
Viitala, Mirka | Steinmetz, Zacharias | Sillanpää, Mika | Mänttäri, Mika | Sillanpää, Markus
Historical and current occurrence of microplastics in water and sediment of a Finnish lake affected by WWTP effluents Texte intégral
2022
Viitala, Mirka | Steinmetz, Zacharias | Sillanpää, Mika | Mänttäri, Mika | Sillanpää, Markus
Only scarce information is available about the abundance of microplastics (MPs) in Nordic lakes. In this study, the occurrence, types, and distribution of MPs were assessed based on the lake water and sediment samples collected from a sub-basin of Lake Saimaa, Finland. The main goal was to estimate the possible effect of the local wastewater treatment plant (WWTP) on the abundance of MPs in different compartments of the recipient lake area. Collected bottom sediment samples were Cs-137 dated and the chronological structure was utilized to relate the concentrations of MPs to their sedimentation years. Raman microspectroscopy was used for the MPs’ identification from both sample matrices. In addition, MPs consisting of polyethylene (PE), polypropylene (PP) and polystyrene (PS) were quantified from lake water samples by pyrolysis-gas chromatography-mass spectrometry to provide a complementary assessment of MPs based on two different analysis methods, which provide different metrics of the abundance of microplastics. MPs concentrations were highest in sediment samples closest to the discharge site of WWTP effluents (4400 ± 620 n/kg dw) compared to other sites. However, such a trend was not found in lake water samples (0.7 ± 0.1 n/L). Overall, microplastic fibers were relatively more abundant in sediment (70%) than in water (40%), and the majority of detected microplastic fibers were identified as polyester. This indicates that a part of textile fibers passing the WWTP processes accumulate in the sediment close to the discharge site. In addition, the abundance of MPs was revealed to have increased slightly during the last 30 years.
Afficher plus [+] Moins [-]Historical and current occurrence of microplastics in water and sediment of a Finnish lake affected by WWTP effluents Texte intégral
2022
Viitala, Mirka | Steinmetz, Zacharias | Sillanpää, Mika | Mänttäri, Mika | Sillanpää, Markus | Suomen ympäristökeskus | The Finnish Environment Institute
Only scarce information is available about the abundance of microplastics (MPs) in Nordic lakes. In this study, the occurrence, types, and distribution of MPs were assessed based on the lake water and sediment samples collected from a sub-basin of Lake Saimaa, Finland. The main goal was to estimate the possible effect of the local wastewater treatment plant (WWTP) on the abundance of MPs in different compartments of the recipient lake area. Collected bottom sediment samples were Cs-137 dated and the chronological structure was utilized to relate the concentrations of MPs to their sedimentation years. Raman microspectroscopy was used for the MPs’ identification from both sample matrices. In addition, MPs consisting of polyethylene (PE), polypropylene (PP) and polystyrene (PS) were quantified from lake water samples by pyrolysis-gas chromatography-mass spectrometry to provide a complementary assessment of MPs based on two different analysis methods, which provide different metrics of the abundance of microplastics. MPs concentrations were highest in sediment samples closest to the discharge site of WWTP effluents (4400 ± 620 n/kg dw) compared to other sites. However, such a trend was not found in lake water samples (0.7 ± 0.1 n/L). Overall, microplastic fibers were relatively more abundant in sediment (70%) than in water (40%), and the majority of detected microplastic fibers were identified as polyester. This indicates that a part of textile fibers passing the WWTP processes accumulate in the sediment close to the discharge site. In addition, the abundance of MPs was revealed to have increased slightly during the last 30 years. Highlights • Higher concentrations of microplastics were detected in sediments closer to WWTP. • Polyester fibers were the most common type of plastics near WWTP. • Microplastic pollution has slightly increased from 1990 to 2018.
Afficher plus [+] Moins [-]Impacts of combined exposure to formaldehyde and PM2.5 at ambient concentrations on airway inflammation in mice Texte intégral
2022
Lu, Xianxian | Gong, Cunyi | Lv, Ke | Zheng, Lifang | Li, Beibei | Zhao, Yuanteng | Lu, Haonan | Wei, Tingting | Huang, Jiawei | Li, Rui
Asthma is a respiratory disease that can be exacerbated by certain environmental factors. Both formaldehyde (FA) and PM₂.₅, the most common indoor and outdoor air pollutants in mainland China, are closely associated with the onset and development of asthma. To date, however, there is very little report available on whether there is an exacerbating effect of combined exposure to FA and PM₂.₅ at ambient concentrations. In this study, asthmatic mice were exposed to 1 mg/m³ FA, 1 mg/kg PM₂.₅, or a combination of 0.5 mg/m³ FA and 0.5 mg/kg PM₂.₅, respectively. Results demonstrated that both levels of oxidative stress and inflammation were significantly increased, accompanied by an obvious decline in lung function. Further, the initial activation of p38 MAPK and NF-κB that intensified the immune imbalance of asthmatic mice were found to be visibly mitigated following the administration of SB203580, a p38 MAPK inhibitor. Noteworthily, it was found that combined exposure to the two at ambient concentrations could significantly worsen asthma than exposure to each of the two alone at twice the ambient concentration. This suggests that combined exposure to formaldehyde and PM₂.₅ at ambient concentrations may have a synergistic effect, thus causing more severe damage in asthmatic mice. In general, this work has revealed that the combined exposure to FA and PM₂.₅ at ambient concentrations can synergistically aggravate asthma via the p38 MAPK pathway in mice.
Afficher plus [+] Moins [-]Detection of Neonicotinoids in agriculture soil and degradation of thiacloprid through photo degradation, biodegradation and photo-biodegradation Texte intégral
2022
Elumalai, Punniyakotti | Yi, Xiaohui | Chen, Zhenguo | Rajasekar, Aruliah | Brazil de Paiva, Teresa Cristina | Hassaan, Mohamed A. | Ying, Guang-guo | Huang, Mingzhi
The social and ecological influence of Neonicotinoids (NEOs) usage in agriculture sector is progressively higher. There are seven NEOs insecticides widely used for the insects control. Among the NEOs, thiacloprid (THD) was extensively used for insect control during crop cultivation. This study targets to analyse the contamination levels of NEOs in agricultural soil and identify photo-biodegradation of THD degradation using pure isolates and mixed consortium. The photo degradation (PD), biodegradation (BD) and photo-biodegradation (PBD) of THD were compared. The corn field agricultural soils were polluted by four NEOs, among them THD had greater contamination level (surface soil: 3901.2 ± 0.04 μg/g) and (sub-surface soil: 3988.6 ± 0.05 μg/g). Three soil free enriched bacterial strains following Bacillus atrophaeus (PB-2), Priestia megaterium (PB-3) (formerly known as Bacillus megaterium), and Peribacillus simplex (PB-4) (formerly known as Bacillus simplex) were identified by microbiological and molecular 16s rRNA gene sequencing. The PD, BD and PBD of THD were conducted and degradation rate was detected by instrument UPLC-MS-MS. The PBD process with blue-LEDs showed better THD degradation efficiency than PD and BD, where the specific THD degradation rate was 85 ± 0.2%, 87 ± 0.5%, and 89 ± 0.3%, respectively for PB-2, PB-3 and PB-4. Then, the photo-biodegradation performance is greater at 150, 175, 200 rpm, pH 7.0–9.0, and temperature 30–35 °C. After the PBD system deliver four intermediate metabolites, the THD degradation process maybe through nitro reduction, hydroxylation and oxidative cleavage pathway.
Afficher plus [+] Moins [-]