Affiner votre recherche
Résultats 1291-1300 de 7,997
Characterization of dicarboxylic acids, oxoacids, and α-dicarbonyls in PM2.5 within the urban boundary layer in southern China: Sources and formation pathways Texte intégral
2021
Liu, Jianing | Zhou, Shengzhen | Zhang, Zhimin | Kawamura, Kimitaka | Zhao, Wanyu | Wang, Xuemei | Shao, Min | Jiang, Fan | Liu, Junwen | Sun, Xi | Hang, Jian | Zhao, Jun | Pei, Chenglei | Zhang, Jingpu | Fu, Pingqing
Low-molecular-weight dicarboxylic acids, which are important components of secondary organic aerosols, have been extensively studied in recent years. Many studies have focused on ground-level observations and literature reports on the vertical distribution of the organic aerosols within the urban boundary layer are limited. In this study, the vertical profiles of dicarboxylic acids and related organic compounds (DCRCs) in PM₂.₅ were investigated at altitudinal levels (ground level and 488 m above the ground level) at the Canton Tower in Guangzhou, southern China, to elucidate their primary sources and secondary formation processes. The concentrations of DCRCs at ground level were generally higher than those at 488 m. Oxalic acid (C₂) was the most abundant species, followed by succinic acid (C₄) and malonic acid (C₃) at both heights. The higher ratio of DCRCs-bound carbon to organic carbon (i.e., DCRCs-C/OC) at 488 m (4.8 ± 1.2%) relative to that at ground level (2.7 ± 0.5%) indicated a higher degree of aerosol aging at 488 m. The abundance of C₂ was increased and the conversion of C₄ to C₃ was enhanced due to the photochemical oxidation of its homologues during long-range transport periods. The increase in C₂ was associated with in-cloud processes during pollution periods. Principal component analysis showed that DCRCs were mainly derived from atmospheric secondary processing and biomass burning was also an important source of long-chain carboxylic acids during autumn in Guangzhou. Our results illustrate that secondary processing and biomass burning play prominent roles in controlling the abundance of DCRCs. Furthermore, DCRCs are affected by air masses from regional areas, oxidation of their precursors via vertical transport and in-cloud processes.
Afficher plus [+] Moins [-]Global greenhouse vegetable production systems are hotspots of soil N2O emissions and nitrogen leaching: A meta-analysis Texte intégral
2021
Qasim, Waqas | Xia, Longlong | Lin, Shan | Wan, Li | Zhao, Yiming | Butterbach-Bahl, Klaus
Vegetable production in greenhouses is often associated with the use of excessive amounts of nitrogen (N) fertilizers, low NUE (15–35%), and high N losses along gaseous and hydrological pathways. In this meta-analysis, we assess the effects of application rate, fertilizer type, irrigation, and soil properties on soil N₂O emissions and nitrogen leaching from greenhouse vegetable systems on the basis of 75 studies. Mean ± standard error (SE) N₂O emissions from unfertilized control plots (N₂Ocₒₙₜᵣₒₗ) and N leaching (NLcₒₙₜᵣₒₗ) of greenhouse vegetable systems were 3.2 ± 0.4 and 91 ± 20 kg N ha⁻¹ yr⁻¹, respectively, indicating legacy effects due to fertilization in preceding crop seasons. Soil organic carbon concentrations (SOC) and irrigation were significantly positively correlated with NLcₒₙₜᵣₒₗ losses, while other soil properties did not significantly affect N₂Ocₒₙₜᵣₒₗ or NLcₒₙₜᵣₒₗ. The annual mean soil N₂O emission from fertilized greenhouse vegetable systems was 12.0 ± 1.0 kg N₂O–N ha⁻¹ yr⁻¹ (global: 0.067 Tg N₂O–N yr⁻¹), with N₂O emissions increasing exponentially with fertilization. The mean EFN₂O was 0.85%. The mean annual nitrogen leaching (NL) was 297 ± 22 kg N ha⁻¹ yr⁻¹ (global: 1.66 Tg N yr⁻¹), with fertilization, irrigation, and SOC explaining 65% of the observed variation. The mean leaching factor across all fertilizer types was 11.9%, but 18.7% for chemical fertilizer. Crop NUE was highest, while N₂O emissions and N leaching were lowest, at fertilizer rates <500 kg N ha⁻¹ year⁻¹. Yield-scaled N₂O emissions (0.05 ± 0.01 kg N₂O–N Mg⁻¹ yr⁻¹) and nitrogen leaching (0.79 ± 0.08 kg N Mg⁻¹ yr⁻¹) were lowest at fertilizer rates <1000 kg N ha⁻¹ yr⁻¹. Vegetables are increasingly produced in greenhouses, often under management schemes of extreme fertilization (>1500 kg N ha⁻¹ yr⁻¹) and irrigation (>1200 mm yr⁻¹). Our study indicates that high environmental N₂O and N leaching losses can be mitigated by reducing fertilization rates to 500–1000 kg N ha⁻¹ yr⁻¹ (mean: ∼762 kg N ha⁻¹ yr⁻¹) without jeopardizing yields.
Afficher plus [+] Moins [-]Interactions and effects of microplastics with heavy metals in aquatic and terrestrial environments Texte intégral
2021
Khalid, Noreen | Aqeel, Muhammad | Noman, Ali | Khan, Shujaul Mulk | Akhter, Noreen
Contamination of waters and soils with microplastics (MPs) is an emerging environmental issue worldwide. MPs constitute a cocktail of various additives and polymers besides adsorbing toxic heavy metals from the environment. This co-occurrence of MPs with heavy metals poses a threat to the health of organisms and is poorly understood. Ingestion of MPs contaminated with heavy metals may also result in subsequent transfer of heavy metals up in the food chain. MPs surfaces play a crucial role in the adsorption of heavy metals. Aged/biofouled MPs facilitate greater adsorption of metals and certain microplastic (MP) polymers adsorb some metals more specifically. External factors involved in the process of adsorption/accumulation of heavy metals are the solution pH, salinity, and the concentration of relevant heavy metals in the media. Desorption greatly depends upon pH of the external solution. This is more concerning as the guts/digestive systems of organisms have low pH which could enhance the desorption of toxic metals and making them accumulate in their bodies. The aim of this article is to discuss the abundance, distribution, adsorption, and desorption behavior of MPs for heavy metals, and their combined toxic effects on flora and fauna based on the limited research on this topic in the literature. There is an overarching need to understand the interactions of MPs with heavy metals in different ecosystems so that the extent of ecotoxic effects they pose could be assessed which would help in the environmental regulation of these pollutants.
Afficher plus [+] Moins [-]Noisy waters can influence young-of-year lobsters’ substrate choice and their antipredatory responses Texte intégral
2021
Leiva, Laura | Scholz, Sören | Giménez, Luis | Boersma, M. (Maarten) | Torres, Gabriela | Krone, Roland | Tremblay, Nelly
Noisy waters can influence young-of-year lobsters’ substrate choice and their antipredatory responses Texte intégral
2021
Leiva, Laura | Scholz, Sören | Giménez, Luis | Boersma, M. (Maarten) | Torres, Gabriela | Krone, Roland | Tremblay, Nelly
Offshore human activities lead to increasing amounts of underwater noise in coastal and shelf environments, which may affect commercially-important benthic invertebrate groups like the re-stocked Helgoland European lobster (Homarus gammarus) in the German Bight (North Sea). It is crucial to understand the impact tonal low-frequency noises, like maritime transport and offshore energy operations, may have on substrate choice and lobsters' behavior to assess potential benefits or bottlenecks of new hard-substrate artificial offshore environments that become available. In this study, we investigated the full factorial effect of a tonal low-frequency noise and predator presence on young-of-year (YOY) European lobsters' in a diurnal and nocturnal experiment. Rocks and European oyster shells (Ostrea edulis) were offered as substrate to YOY lobsters for 3 h. Video recordings (n = 134) allowed the identification of lobsters' initial substrate choice, diel activity and key behaviors (peeking, shelter construction, exploration and hiding). To ensure independence, YOY lobsters in the intermolt stage were randomly selected and assigned to the experimental tanks and used only once. We provide the first evidence that stressors alone, and in combination, constrain YOY lobsters' initial substrate choice towards rocks. During nighttime, the joint effect of exposure to a constant low-frequency noise and predator presence decreased antipredator behavior (i.e., hiding) and increased exploration behavior. Noise may thus interfere with YOY lobsters' attention and decision-making processes. This outcome pinpoints that added tonal low-frequency noise in the environment have the potential to influence the behavior of early-life stages of European lobsters under predator pressure and highlights the importance of including key benthic invertebrates' community relationships in anthropogenic noise risk assessments. Among others, effects of noise must be taken into consideration in plans involving the multi-use of any offshore area for decapods’ stock enhancement, aquaculture, and temporary no-take zones.
Afficher plus [+] Moins [-]Noisy waters can influence young-of-year lobsters’ substrate choice and their antipredatory responses Texte intégral
2021
Leiva, Laura | Scholz, Sören | Giménez, Luis | Boersma, Maarten | Torres, Gabriela | Krone, Roland | Tremblay, Nelly
Particulate respirator use and blood pressure: A systematic review and meta-analysis Texte intégral
2021
Han, Changwoo | Lim, Youn-Hee | Hong, Yun-Chul
People use a particulate respirator in order to reduce exposure to ambient fine particulate matter (PM₂.₅). Acute exposure to PM₂.₅ is known to increase blood pressure. However, systematic reviews or meta-analyses on blood pressure-related benefits of using a particulate respirator is lacking. Therefore, we reviewed randomized crossover intervention studies on blood pressure-related effects of particulate matter respirator use. We conducted a literature review of articles found on Embase, Medline, and Cochrane library on August 31, 2020. The study outcomes were systolic and diastolic blood pressure and mean arterial pressure. A random-effect model was used in the meta-analysis. Subgroup analyses, based on age (adult < 60 years, elderly ≥ 60 years), personal PM₂.₅ exposure levels (High: ≥ 25 μg/m³, Low: < 25 μg/m³), and types of monitoring methods (ambulatory and resting blood pressure) were conducted. We identified 297 references, and seven studies were included in our systematic review. None of the studies used a sham respirator as control and complete allocation concealment and blinding were impossible. The use of a particulate respirator was associated with a −1.23 mmHg (95% confidence interval (CI): −2.53, 0.07) change in systolic blood pressure and a −1.57 mmHg (95% CI: −3.85, 0.71) change in mean arterial pressure. There were significant heterogeneities and possibilities for publication bias. The subgroup analyses revealed that studies involving elderly individuals, those conducted in high PM₂.₅ personal exposure, and those in which resting blood pressure was monitored demonstrated a larger decrease in blood pressure resulting from respirator use. Further intervention studies with a large sample size and subjects with diverse characteristics and different personal PM₂.₅ levels may add the evidence to current literature.
Afficher plus [+] Moins [-]Effects of polycyclic aromatic hydrocarbon structure on PAH mineralization and toxicity to soil microorganisms after oxidative bioremediation by laccase Texte intégral
2021
Zeng, Jun | Li, Yanjie | Dai, Yeliang | Wu, Yucheng | Lin, Xiangui
While bioremediation using soil microorganisms is considered an energy-efficient and eco-friendly approach to treat polycyclic aromatic hydrocarbon (PAH)-contaminated soils, a variety of polar PAH metabolites, particularly oxygenated ones, could increase the toxicity of the soil after biodegradation. In this study, a typical bio-oxidative transformation of PAH into quinones was investigated in soil amended with laccase using three PAHs with different structures (anthracene, benzo[a]anthracene, and benzo[a]pyrene) to assess the toxicity after oxidative bioremediation. The results show that during a 2-month incubation period the oxidation process promoted the formation of non-extractable residues (NERs) of PAHs, and different effects on mineralization were observed among the three PAHs. Oxidation enhanced the mineralization of the high-molecular-weight (HMW) PAHs (benzo[a]anthracene and benzo[a]pyrene) but inhibited the mineralization of the low-molecular-weight (LMW) PAH (anthracene). The inhibition of anthracene suggests increased toxicity after oxidative bioremediation, which coincided with a decrease in soil nitrification activity, bacterial diversity and PAH-ring hydroxylating dioxygenase gene copies. The analysis of PAH metabolites in soil extract indicated that oxidation by laccase was competitive with the natural transformation processes of PAHs and revealed that intermediates other than quinone metabolites increased the toxicity of soil during subsequent degradation. The different metabolic profiles of the three PAHs indicated that the toxicity of soil after PAH oxidation by laccase was strongly affected by the PAH structure. Despite the potential increase in toxicity, the results suggest that oxidative bioremediation is still an eco-friendly method for the treatment of HMW PAHs since the intermediates from HMW PAHs are more easily detoxified via NER formation than LMW PAHs.
Afficher plus [+] Moins [-]Life cycle assessment of environmental impacts associated with oxidative desulfurization of diesel fuels catalyzed by metal-free reduced graphene oxide Texte intégral
2021
Lin, Shichun | Ng, Sue-Faye | Ong, Wee-Jun
This study aimed to analyze the environmental impacts of the oxidative desulfurization (ODS) process catalyzed by metal-free reduced graphene oxide (rGO) through life cycle assessment (LCA). The environmental impacts study containing the rGO production process, the ODS process, the comparison of different oxidants and solvents was developed. This study was performed by using ReCiPe 2016 V1.03 Hierarchist midpoint as well as endpoint approach and SimaPro software. For the production of 1 kg rGO, the results showed that hydrochloric acid (washing), sulfuric acid (mixing), hydrazine (reduction) and electricity were four main contributors in this process, and this process showed a significant impact on human health 14.21 Pt followed by ecosystem 0.845 Pt and resources 0.164 Pt. For the production of 1 kg desulfurized oil (400 ppm), main environmental impacts were terrestrial ecotoxicity (43.256 kg 1,4-DCB), global warming (41.058 kg CO₂), human non-carcinogenic toxicity (19.570 kg 1,4-DCB) and fossil resource scarcity (13.178 kg oil), and the main contributors were electricity, diesel oil and acetonitrile. The whole ODS process also showed a greatest effect on human health. For two common oxidants hydrogen peroxide and oxygen used in ODS, hydrogen peroxide showed a greater impact than oxygen. On the other hand, for three common solvents employed in ODS, N-methyl-2-pyrrolidone had a more serious impact on human health followed by acetonitrile and N,N-dimethylformamide. As such, LCA results demonstrated the detailed environmental impacts originated from the catalytic ODS, hence elucidating systematic guidance for its future development toward practicality.
Afficher plus [+] Moins [-]Ambient temperature and genome-wide DNA methylation: A twin and family study in Australia Texte intégral
2021
Xu, Rongbin | Li, Shuai | Li, Shanshan | Wong, Ee Ming | Southey, Melissa C. | Hopper, John L. | Abramson, Michael J. | Guo, Yuming
Little is known about the association between ambient temperature and DNA methylation, which is a potential biological process through which ambient temperature affects health. This study aimed to evaluate the association between ambient temperature and DNA methylation across human genome. We included 479 Australian women, including 132 twin pairs and 215 sisters of these twins. Blood-derived DNA methylation was measured using the HumanMethylation450 BeadChip array. Data on average ambient temperature during eight different exposure windows [lag0d (the blood draw day), lag0-7d (the current day and previous seven days prior to blood draw), lag0-14d, lag0-21d, lag0-28d, lag0-90d, lag0-180d, and lag0-365d)] was linked to each participant's home address. For each cytosine-guanine dinucleotide (CpG), we evaluated the association between its methylation level and temperature using generalized estimating equations (GEE), adjusting for important covariates. We used comb-p and DMRcate to identify differentially methylated regions (DMRs). We identified 31 CpGs at which blood DNA methylation were significantly associated with ambient temperature with false discovery rate [FDR] < 0.05. There were 82 significant DMRs identified by both comb-p (Sidak p-value < 0.01) and DMRcate (FDR < 0.01). Most of these CpGs and DMRs only showed association with temperature during one specific exposure window. These CpGs and DMRs were mapped to 85 genes. These related genes have been related to many human chronic diseases or phenotypes (e.g., diabetes, arthritis, breast cancer, depression, asthma, body height) in previous studies. The signals of short-term windows (lag0d and lag0-21d) showed enrichment in biological processes related to cell adhesion. In conclusion, short-, medium-, and long-term exposures to ambient temperature were all associated with blood DNA methylation, but the target genomic loci varied by exposure window. These differential methylation signals may serve as potential biomarkers to understand the health impacts of temperature.
Afficher plus [+] Moins [-]Evaluating the fate of hexabromocyclododecanes in the coastal environment: Fugacity analysis using field data Texte intégral
2021
Kim, Yoonsub | Lee, Hwang | Jang, Mi | Hong, Sang Hee | Kwon, Jung-Hwan
Abundant use of plastic materials has increased the amount of microplastics (MPs) and related hazardous chemicals in the marine environment. Hexabromocyclododecanes (HBCDs), brominated flame retardants added to expanded polystyrene (EPS), have been detected in biotic and abiotic samples. In this study, the partition constants of HBCDs between plastics and seawater (KPₛw) were determined. Fugacities of HBCDs in EPS, seawater, sediment, and mussels were obtained to determine the directions of the diffusive flux. The fugacities in EPS (fEPS) were greater than those in seawater (fₛw), sediment (fₛₑd), and mussels (fₛwₘᵤₛₛₑₗ₋EPS and fₘᵤₛₛₑₗ₋ᵣₒcₖ) by three orders of magnitude, indicating that EPS plastics are a significant source of HBCDs. The fₘᵤₛₛₑₗ₋ᵣₒcₖ of α-HBCD in rock mussels was greater than fₛw by factors of 1.7, whereas the fₘᵤₛₛₑₗ₋ᵣₒcₖ of γ-HBCD was smaller than fₛw by factors of 16, indicating the bioisomerization from γ-to α-HBCD. The relatively constant concentration ratio of β-HBCD to the total HBCDs indicated that β-HBCD is a sufficient tracer for determining the diffusive flux. The fₛₑd values of HBCDs were greater than fₛw by factors of 17–28, implying a probable advective vertical flow of HBCDs from the EPS plastics, which requires further investigation.
Afficher plus [+] Moins [-]A systematic review of the leaf traits considered to contribute to removal of airborne particulate matter pollution in urban areas Texte intégral
2021
Corada, Karina | Woodward, Huw | Alaraj, Hiba | Collins, C Matilda | de Nazelle, Audrey
Global urban planning has promoted green infrastructure (GI) such as street trees, shrubs or other greenspace in order to mitigate air pollution. Although considerable attention has been paid to understanding particulate matter (PM) deposition on GI, there has been little focus on identifying which leaf traits might maximise airborne PM removal. This paper examines existing literature to synthesize the state of knowledge on leaf traits most relevant to PM removal. We systematically reviewed measurement studies that evaluated particulate matter accumulated on leaves on street trees, shrubs green roofs, and green walls, for a variety of leaf traits. Our final selection included 62 papers, most from field studies and a handful from wind tunnel studies. The following were variously promoted as useful traits: coniferous needle leaves; small, rough and textured broadleaves; lanceolate and ovate shapes; waxy coatings, and high-density trichomes. Consideration of these leaf traits, many of which are also associated with drought tolerance, may help to maximise PM capture. Although effective leaf traits were identified, there is no strong or consistent evidence to identify which is the most influential leaf trait in capturing PM. The diversity in sampling methods, wide comparison groups and lack of background PM concentration measures in many studies limited our ability to synthesize results. We found that several ancillary factors contribute to variations in the accumulation of PM on leaves, thus cannot recommend that selection of urban planting species be based primarily on leaf traits. Further research into the vegetation structural features and standardization of the method to measure PM on leaves is needed.
Afficher plus [+] Moins [-]