Affiner votre recherche
Résultats 131-140 de 4,367
Modelling dispersal of radioactive contaminants in Arctic waters as a result of potential recovery operations on the dumped submarine K-27 Texte intégral
2017
Karcher, Michael | Hosseini, A. | Schnur, R. | Kauker, Frank | Brown, J.E. | Dowdall, M. | Strand, P.
Modelling dispersal of radioactive contaminants in Arctic waters as a result of potential recovery operations on the dumped submarine K-27 Texte intégral
2017
Karcher, Michael | Hosseini, A. | Schnur, R. | Kauker, Frank | Brown, J.E. | Dowdall, M. | Strand, P.
Of the wide variety of dumped objects containing radioactive materials in the Arctic seas, the submarine K-27 constitutes a major risk due to the large amount of highly enriched uranium onboard and its location in shallow waters. As the matter of potential operations involving raising of the submarine have entered the public arena, a priori assessment of the contamination in the Arctic marine environment that could result after a possible accident during such operations is a matter of some interest. The dispersion of contaminants within the Arctic has been assessed using a large scale hydrodynamic model for a series of plausible accident scenarios and locations under different oceanographic regimes. Results indicate that, depending primarily on the nature of a release (i.e. instantaneous or continuous), large areas of the Arctic marine environment will exhibit contamination to varying degrees.
Afficher plus [+] Moins [-]Modelling dispersal of radioactive contaminants in Arctic waters as a result of potential recovery operations on the dumped submarine K-27 Texte intégral
2017
Karcher, M. | Hosseini, A. | Schnur, R. | Kauker, F. | Brown, J.E. | Dowdall, M. | Strand, P.
Of the wide variety of dumped objects containing radioactive materials in the Arctic seas, the submarine K-27 constitutes a major risk due to the large amount of highly enriched uranium onboard and its location in shallow waters. As the matter of potential operations involving raising of the submarine have entered the public arena, a priori assessment of the contamination in the Arctic marine environment that could result after a possible accident during such operations is a matter of some interest. The dispersion of contaminants within the Arctic has been assessed using a large scale hydrodynamic model for a series of plausible accident scenarios and locations under different oceanographic regimes. Results indicate that, depending primarily on the nature of a release (i.e. instantaneous or continuous), large areas of the Arctic marine environment will exhibit contamination to varying degrees.
Afficher plus [+] Moins [-]Ozone flux in plant ecosystems: new opportunities for long-term monitoring networks to deliver ozone-risk assessments Texte intégral
2017
Fares, Silvano | Conte, Adriano | Chabbi, Abad | Research Centre for Forestry and Wood ; Consiglio per la Ricerca in Agricoltura e l’analisi dell’economia agraria = Council for Agricultural Research and Economics (CREA) | Unité de Recherche Pluridisciplinaire Prairies et Plantes Fourragères (P3F) ; Institut National de la Recherche Agronomique (INRA) | Ecologie fonctionnelle et écotoxicologie des agroécosystèmes (ECOSYS) ; Institut National de la Recherche Agronomique (INRA)-AgroParisTech | Université Paris-Saclay
Ozone (O3) is a photochemically formed reactive gas responsible for a decreasing carbon assimilation in plant ecosystems. Present in the atmosphere in trace concentrations (less than 100 ppbv), this molecule is capable of inhibiting carbon assimilation in agricultural and forest ecosystems. Ozone-risk assessments are typically based on manipulative experiments. Present regulations regarding critical ozone levels are mostly based on an estimated accumulated exposure over a given threshold concentration. There is however a scientific consensus over flux estimates being more accurate, because they include plant physiology analyses and different environmental parameters that control the uptake—that is, not just the exposure—of O3. While O3 is a lot more difficult to measure than other non-reactive greenhouse gases, UV-based and chemiluminescence sensors enable precise and fast measurements and are therefore highly desirable for eddy covariance studies. Using micrometeorological techniques in association with latent heat flux measurements in the field allows for the partition of ozone fluxes into the stomatal and non-stomatal sinks along the soil-plant continuum. Long-term eddy covariance measurements represent a key opportunity in estimating carbon assimilation at high-temporal resolutions, in an effort to study the effect of climate change on photosynthetic mechanisms. Our aim in this work is to describe potential of O3 flux measurement at the canopy level for ozone-risk assessment in established long-term monitoring networks.
Afficher plus [+] Moins [-]Clustering pesticides according to their molecular properties, fate, and effects by considering additional ecotoxicological parameters in the TyPol method Texte intégral
2017
Traoré, Harouna | Crouzet, Olivier | Mamy, Laure | Sireyjol, Christine | Rossard, Virginie | Servien, Rémi | Latrille, Eric | Martin-Laurent, Fabrice | Patureau, Dominique | Benoit, Pierre | Ecologie fonctionnelle et écotoxicologie des agroécosystèmes (ECOSYS) ; Institut National de la Recherche Agronomique (INRA)-AgroParisTech | Université Paris-Saclay | Laboratoire de Biotechnologie de l'Environnement [Narbonne] (LBE) ; Institut National de la Recherche Agronomique (INRA)-Institut national d’études supérieures agronomiques de Montpellier (Montpellier SupAgro) | ToxAlim (ToxAlim) ; Institut National de la Recherche Agronomique (INRA)-Université Toulouse III - Paul Sabatier (UT3) ; Université de Toulouse (UT)-Université de Toulouse (UT)-Ecole Nationale Vétérinaire de Toulouse (ENVT) ; Institut National Polytechnique (Toulouse) (Toulouse INP) ; Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National Polytechnique (Toulouse) (Toulouse INP) ; Université de Toulouse (UT)-Ecole d'Ingénieurs de Purpan (INP - PURPAN) ; Institut National Polytechnique (Toulouse) (Toulouse INP) ; Université de Toulouse (UT)-Université de Toulouse (UT) | Agroécologie [Dijon] ; Institut National de la Recherche Agronomique (INRA)-Université de Bourgogne (UB)-AgroSup Dijon - Institut National Supérieur des Sciences Agronomiques, de l'Alimentation et de l'Environnement-Université Bourgogne Franche-Comté [COMUE] (UBFC) | This project was supported by the research program "Assessing and reducing environmental risks from plant protection products" funded by the French Ministries in charge of Ecology and Agriculture (IMPEC project)
International Symposium on Effect-Related Evaluation of Anthropogenic Trace Substances - Concepts for Genotoxicity Neurotoxicity and Endocrine Effects, Aachen, october 2015 | Understanding the fate and ecotoxicological effects of pesticides largely depends on their molecular properties. We recentlydeveloped BTyPol^ (Typology of Pollutants), a classification method of organic compounds based on statistical analyses. Itcombines several environmental (sorption coefficient, degradation half-life) and one ecotoxicological (bioconcentration factor)parameters, to structural molecular descriptors (number of atoms in the molecule, molecular surface, dipole moment, energy oforbitals, etc.). The present study attempts to extend TyPol to the ecotoxicological effects of pesticides on non-target organisms,based on data analysis from available literature and databases. It revealed that relevant ecotoxicological endpoints for terrestrialorganisms (e.g., soil microorganisms, invertebrates) that support a range of ecosystemic services are lacking as compared toaquatic organisms. The availability of ecotoxicological parameters was also lower for chronic than for acute ecotoxicity endpoints.Consequently, seven parameters were included for acute (EC50, LC50) and chronic (NOEC) ecotoxicological effects forone terrestrial (Eisenia sp.) and three aquatic (Daphnia sp., algae, Lemna sp.) organisms. In this new configuration, we usedTyPol to classify 50 pesticides into different clusters that gather molecules with similar environmental behaviors and ecotoxicologicaleffects. The classification results evidenced relationships between molecular descriptors, environmental parameters, andthe added ecotoxicological endpoints. This proof-of-concept study also showed that TyPol in silico classification can successfullyaddress new scientific questions and be expanded with other parameters of interest.
Afficher plus [+] Moins [-]Low effect of phenanthrene bioaccessibility on its biodegradation in diffusely contaminated soil Texte intégral
2017
Crampon, M. | Cébron, A. | Portet-Koltalo, F. | Uroz, S. | Le Derf, F. | Bodilis, J. | Chimie Organique et Bioorganique : Réactivité et Analyse (COBRA) ; Institut de Chimie Organique Fine (IRCOF) ; Université de Rouen Normandie (UNIROUEN) ; Normandie Université (NU)-Normandie Université (NU)-Institut national des sciences appliquées Rouen Normandie (INSA Rouen Normandie) ; Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Université de Rouen Normandie (UNIROUEN) ; Normandie Université (NU)-Normandie Université (NU)-Institut national des sciences appliquées Rouen Normandie (INSA Rouen Normandie) ; Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Institut Normand de Chimie Moléculaire Médicinale et Macromoléculaire (INC3M) ; Université de Caen Normandie (UNICAEN) ; Normandie Université (NU)-Normandie Université (NU)-École Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN) ; Normandie Université (NU)-Université Le Havre Normandie (ULH) ; Normandie Université (NU)-Université de Rouen Normandie (UNIROUEN) ; Normandie Université (NU)-Institut national des sciences appliquées Rouen Normandie (INSA Rouen Normandie) ; Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Institut de Chimie - CNRS Chimie (INC-CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université de Caen Normandie (UNICAEN) ; Normandie Université (NU)-École Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN) ; Normandie Université (NU)-Université Le Havre Normandie (ULH) ; Normandie Université (NU)-Institut de Chimie - CNRS Chimie (INC-CNRS)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS) | Laboratoire de Microbiologie Signaux et Microenvironnement (LMSM) ; Université de Rouen Normandie (UNIROUEN) ; Normandie Université (NU)-Normandie Université (NU) | Laboratoire Interdisciplinaire des Environnements Continentaux (LIEC) ; Institut national des sciences de l'Univers (INSU - CNRS)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS) | Unité de recherche Biogéochimie des Ecosystèmes Forestiers (BEF) ; Institut National de la Recherche Agronomique (INRA) | Interactions Arbres-Microorganismes (IAM) ; Institut National de la Recherche Agronomique (INRA)-Université de Lorraine (UL) | Laboratoire d'Ecologie Microbienne - UMR 5557 (LEM) ; Institut National de la Recherche Agronomique (INRA)-Université Claude Bernard Lyon 1 (UCBL) ; Université de Lyon-Université de Lyon-Ecole Nationale Vétérinaire de Lyon (ENVL)-VetAgro Sup - Institut national d'enseignement supérieur et de recherche en alimentation, santé animale, sciences agronomiques et de l'environnement (VAS)-Centre National de la Recherche Scientifique (CNRS) | "Region Haute Normandie" (France) through the Normandy SCALE research network
Low effect of phenanthrene bioaccessibility on its biodegradation in diffusely contaminated soil Texte intégral
2017
Crampon, M. | Cébron, A. | Portet-Koltalo, F. | Uroz, S. | Le Derf, F. | Bodilis, J. | Chimie Organique et Bioorganique : Réactivité et Analyse (COBRA) ; Institut de Chimie Organique Fine (IRCOF) ; Université de Rouen Normandie (UNIROUEN) ; Normandie Université (NU)-Normandie Université (NU)-Institut national des sciences appliquées Rouen Normandie (INSA Rouen Normandie) ; Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Université de Rouen Normandie (UNIROUEN) ; Normandie Université (NU)-Normandie Université (NU)-Institut national des sciences appliquées Rouen Normandie (INSA Rouen Normandie) ; Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Institut Normand de Chimie Moléculaire Médicinale et Macromoléculaire (INC3M) ; Université de Caen Normandie (UNICAEN) ; Normandie Université (NU)-Normandie Université (NU)-École Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN) ; Normandie Université (NU)-Université Le Havre Normandie (ULH) ; Normandie Université (NU)-Université de Rouen Normandie (UNIROUEN) ; Normandie Université (NU)-Institut national des sciences appliquées Rouen Normandie (INSA Rouen Normandie) ; Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Institut de Chimie - CNRS Chimie (INC-CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université de Caen Normandie (UNICAEN) ; Normandie Université (NU)-École Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN) ; Normandie Université (NU)-Université Le Havre Normandie (ULH) ; Normandie Université (NU)-Institut de Chimie - CNRS Chimie (INC-CNRS)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS) | Laboratoire de Microbiologie Signaux et Microenvironnement (LMSM) ; Université de Rouen Normandie (UNIROUEN) ; Normandie Université (NU)-Normandie Université (NU) | Laboratoire Interdisciplinaire des Environnements Continentaux (LIEC) ; Institut national des sciences de l'Univers (INSU - CNRS)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS) | Unité de recherche Biogéochimie des Ecosystèmes Forestiers (BEF) ; Institut National de la Recherche Agronomique (INRA) | Interactions Arbres-Microorganismes (IAM) ; Institut National de la Recherche Agronomique (INRA)-Université de Lorraine (UL) | Laboratoire d'Ecologie Microbienne - UMR 5557 (LEM) ; Institut National de la Recherche Agronomique (INRA)-Université Claude Bernard Lyon 1 (UCBL) ; Université de Lyon-Université de Lyon-Ecole Nationale Vétérinaire de Lyon (ENVL)-VetAgro Sup - Institut national d'enseignement supérieur et de recherche en alimentation, santé animale, sciences agronomiques et de l'environnement (VAS)-Centre National de la Recherche Scientifique (CNRS) | "Region Haute Normandie" (France) through the Normandy SCALE research network
International audience | This study focused on the role of bioaccessibility in the phenanthrene (PHE) biodegradation in diffusely contaminated soil, by combining chemical and microbiological approaches.First, we determined PHE dissipation rates and PHE sorption/desorption isotherms for two soils (PPY and Pv) presenting similar chronic PAH contamination, but different physico-chemical properties.Our results revealed that the PHE dissipation rate was significantly higher in the Pv soil compared to the PPY soil, while PHE sorption/desorption isotherms were similar. Interestingly, increases of PHE desorption and potentially of PHE bioaccessibility were observed for both soils when adding rhamnolipids (biosurfactants produced by Pseudomonas aeruginosa). Second, using C-13-PHE incubated in the same soils, we analyzed the PHE degrading bacterial communities. The combination of stable isotope probing (DNA-SIP) and 16S rRNA gene pyrosequencing revealed that Betaproteobacteria were the main PHE degraders in the Pv soil, while a higher bacterial diversity (Alpha-, Beta-, Gammaproteobacteria and Actinobacteria) was involved in PHE degradation in the PPY soil. The amendment of biosurfactants commonly used in biostimulation methods (i.e. rhamnolipids) to the two soils clearly modified the PHE sorption/desorption isotherms, but had no significant impact on PHE degradation rates and PHE-degraders identity.These results demonstrated that increasing the bioaccessibility of PHE has a low impact on its degradation and on the functional populations involved in this degradation.
Afficher plus [+] Moins [-]Low effect of phenanthrene bioaccessibility on its biodegradation in diffusely contaminated soil Texte intégral
2017
Crampon, Michel | Cébron, A. | Portet-Koltalo, F. | Uroz, S. | Le Derf, F. | Bodilis, J.
This study focused on the role of bioaccessibility in the phenanthrene (PHE) biodegradation in diffusely contaminated soil, by combining chemical and microbiological approaches. First, we determined PHE dissipation rates and PHE sorption/desorption isotherms for two soils (PPY and Pv) presenting similar chronic PAH contamination, but different physico-chemical properties. Our results revealed that the PHE dissipation rate was significantly higher in the Pv soil compared to the PPY soil, while PHE sorption/desorption isotherms were similar. Interestingly, increases of PHE desorption and potentially of PHE bioaccessibility were observed for both soils when adding rhamnolipids (biosurfactants produced by Pseudomonas aeruginosa). Second, using 13C-PHE incubated in the same soils, we analyzed the PHE degrading bacterial communities. The combination of stable isotope probing (DNA-SIP) and 16S rRNA gene pyrosequencing revealed that Betaproteobacteria were the main PHE degraders in the Pv soil, while a higher bacterial diversity (Alpha-, Beta-, Gammaproteobacteria and Actinobacteria) was involved in PHE degradation in the PPY soil. The amendment of biosurfactants commonly used in biostimulation methods (i.e. rhamnolipids) to the two soils clearly modified the PHE sorption/desorption isotherms, but had no significant impact on PHE degradation rates and PHE-degraders identity. These results demonstrated that increasing the bioaccessibility of PHE has a low impact on its degradation and on the functional populations involved in this degradation.
Afficher plus [+] Moins [-]Non essential element concentrations in brown grain rice : assessment by advanced data mining techniques Texte intégral
2017
Villafañe, Roxana Noelia | Hidalgo, Melisa Jazmín | Píccoli, Analía Beatriz | Marchevsky, Eduardo Jorge | Pellerano, Roberto Gerardo
The concentrations of 17 non-essential elements (Al, As, Ba, Be, Cd, Ce, Cr, Hg, La, Li, Pb, Sb, Sn, Sr, Th, Ti, and Tl) were determined in brown grain rice samples of two varieties: Fortuna and Largo Fino. The samples were collected from the four main producing regions of Corrientes province (Argentina). Quantitative determinations were performed by inductively coupled plasma mass spectrometry (ICP-MS), using a validated method. The contents of As, Be, Cd, Ce, Cr, Hg, Pb, Sb, Sn, Th, and Tl were very low or not detected in most samples. The non-essential element levels detected were in line with studies conducted in rice from different parts of the world. In order to characterize the influence of geographical origin in the samples, the following classification methods were carried out: linear discriminant analysis (LDA), k-nearest neighbors (k-NN), partial least squares discriminant analysis (PLS-DA), support vector machine (SVM) and random forests (RF). The best performance was obtained by using RF (96%) and SVM (96%). The results reported here showed the variation in the non-essential element profiles in rice grain depending on the geographical origin.
Afficher plus [+] Moins [-]Using fluorescent dyes as proxies to study herbicide removal by sorption in buffer zones Texte intégral
2017
Dollinger, Jeanne | Dagès, Cécile | Voltz, Marc | Laboratoire d'étude des Interactions Sol - Agrosystème - Hydrosystème (UMR LISAH) ; Institut de Recherche pour le Développement (IRD)-Institut National de la Recherche Agronomique (INRA)-Centre international d'études supérieures en sciences agronomiques (Montpellier SupAgro)-Institut national d’études supérieures agronomiques de Montpellier (Montpellier SupAgro) | Research and development project funded by the French Office for Water and Aquatic Bodies (ONEMA)
The performance of buffer zones for removing pesticides from runoff water varies greatly according to landscape settings, hydraulic regime, and system design. Evaluating the performance of buffers for a range of pesticides and environmental conditions can be very expensive. Recent studies suggested that the fluorescent dyes uranine and sulforhodamine B could be used as cost-effective surrogates of herbicides to evaluate buffer performance. However, while transformation mechanisms in buffers have been extensively documented, sorption processes of both dyes have rarely been investigated. In this study, we measured the adsorption, desorption, and kinetic sorption coefficients of uranine and sulforhodamine B for a diverse range of buffer zone materials (soils, litters, plants) and compared the adsorption coefficients (Kd) to those of selected herbicides. We also compared the global sorption capacity of 6 ditches, characterized by varying proportions of the aforementioned materials, between both dyes and a set of four herbicides using the sorption-induced pesticide retention indicator (SPRI). We found that both the individual Kd of uranine for the diverse buffer materials and the global sorption capacity of the ditches are equivalent to those of the herbicides diuron, isoproturon, and metolachlor. The Kd of sulforhodamine B on plants and soils are equivalent to those of glyphosate, and the global sorption capacities of the ditches are equivalent for both molecules. Hence, we demonstrate for the first time that uranine can be used as a proxy of moderately hydrophobic herbicides to evaluate the performance of buffer systems, whereas sulforhodamine B can serve as a proxy for more strongly sorbing herbicides.
Afficher plus [+] Moins [-]Side effects of spirotetramat on pupae and adults of a Neotropical strain of <em>Eretmocerus mundus</em> (Hymenoptera: Aphelinidae): Effects on the life parameters and demography Texte intégral
2017
Francesena, Natalia | Desneux, Nicolas | Ribeiro de Campos, Mateus | Schneider, Marcela Inés | Centro de Estudios Parasitologicos y de Vectores [La Plata] (CEPAVE) ; Consejo Nacional de Investigaciones Científicas y Técnicas [Buenos Aires] (CONICET)-Universidad Nacional de la Plata [Argentine] (UNLP)-Comisión de Investigaciones Científicas [Buenos Aires] (CIC) | Institut Sophia Agrobiotech (ISA) ; Institut National de la Recherche Agronomique (INRA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS)-Centre National de la Recherche Scientifique (CNRS) | COMUE Université Côte d'Azur (2015-2019) (COMUE UCA) | PICT project from the Argentine National Agency for the Promotion of Science and Technology (ANPCyT) [1752]; PIP project from the Argentine National Agency for the Promotion of Science and Technology (ANPCyT) [0205]; CONICET
International audience | The negative impact of conventional pesticides on the environment is already extensively discussed worldwide. Although the use of chemical agents for controlling agricultural pests remains as first-line strategy for pest control, novel biorational active insecticides, such as spirotetramat, have appeared in the pesticide market during recent years in Argentina. The aim of this study was to assess the toxicity of spirotetramat on two developmental stages of a Neotropical strain of Eretmocerus mundus, with the conventional insecticide cypermethrin as a positive control, and to determine spirotetramat's side effects on parasitoid demographic parameters. Lethal effects of both insecticides on pupae and adults were evaluated by adult emergency and survival, respectively; whereas sublethal effects on both development stages were assessed by adult longevity, reproduction capacity, sex ratio, and longevity of the first progeny. Spirotetramat proved less harmful than cypermethrin at both developmental stages studied, corroborating once more the high toxicity of this pyrethroid to natural enemies. Although spirotetramat did not affect the emergence and reproductive capacity of adults surviving pupal exposure, the longevity of the first progeny was reduced as was adult survival and longevity after exposure to residues. Spirotetramat also reduced all demographic parameters in the population evaluation. This work is the first report of spirotetramat toxicity at the population level and demonstrates the need to assess the total effect of pesticides on natural enemies.
Afficher plus [+] Moins [-]Integrated modeling of agricultural scenarios (IMAS) to support pesticide action plans: the case of the Coulonge drinking water catchment area (SW France) | Modélisation intégrée de scénarios agricoles (IMAS) pour l'aide à la décision publique : le cas de l'aire d'alimentation de captage de Coulonge St Hippolyte (SO France) Texte intégral
2017
Vernier, Françoise | Leccia-Phelpin, Odile | Lescot, Jean-Marie | Minette, Sebastien | Miralles, A. | Barberis, Delphine | Scordia, C. | Kuentz Simonet, V. | Tonneau, J.P. | Environnement, territoires et infrastructures (UR ETBX) ; Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA) | CHAMBRE REGIONALE D'AGRICULTURE MIGNALOUX BEAUVOIR FRA ; Partenaires IRSTEA ; Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA) | Territoires, Environnement, Télédétection et Information Spatiale (UMR TETIS) ; Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-AgroParisTech-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Centre National de la Recherche Scientifique (CNRS)
Integrated modeling of agricultural scenarios (IMAS) to support pesticide action plans: the case of the Coulonge drinking water catchment area (SW France) | Modélisation intégrée de scénarios agricoles (IMAS) pour l'aide à la décision publique : le cas de l'aire d'alimentation de captage de Coulonge St Hippolyte (SO France) Texte intégral
2017
Vernier, Françoise | Leccia-Phelpin, Odile | Lescot, Jean-Marie | Minette, Sebastien | Miralles, A. | Barberis, Delphine | Scordia, C. | Kuentz Simonet, V. | Tonneau, J.P. | Environnement, territoires et infrastructures (UR ETBX) ; Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA) | CHAMBRE REGIONALE D'AGRICULTURE MIGNALOUX BEAUVOIR FRA ; Partenaires IRSTEA ; Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA) | Territoires, Environnement, Télédétection et Information Spatiale (UMR TETIS) ; Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-AgroParisTech-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Centre National de la Recherche Scientifique (CNRS)
[Departement_IRSTEA]Territoires [TR1_IRSTEA]DTAM [Axe_IRSTEA]DTAM-QT2-ADAPTATION [TR2_IRSTEA]SYNERGIE | International audience | Non-point source pollution is a cause of major concern within the European Union. This is reflected in increasing public and political focus on a more sustainable use of pesticides, as well as a reduction in diffuse pollution. Climate change will likely to lead to an even more intensive use of pesticides in the future, affecting agriculture in many ways. At the same time, the Water Framework Directive (WFD) and associated EU policies called for a “good” ecological and chemical status to be achieved for water bodies by the end of 2015, currently delayed to 2021–2027 due to a lack of efficiency in policies and timescale of resilience for hydrosystems, especially groundwater systems. Water managers need appropriate and user-friendly tools to design agro-environmental policies. These tools should help them to evaluate the potential impacts of mitigation measures on water resources, more clearly define protected areas, and more efficiently distribute financial incentives to farmers who agree to implement alternative practices. At present, a number of reports point out that water managers do not use appropriate information from monitoring or models to make decisions and set environmental action plans. In this paper, we propose an integrated and collaborative approach to analyzing changes in land use, farming systems, and practices and to assess their effects on agricultural pressure and pesticide transfers to waters. The integrated modeling of agricultural scenario (IMAS) framework draws on a range of data and expert knowledge available within areas where a pesticide action plan can be defined to restore the water quality, French “Grenelle law” catchment areas, French Water Development and Management Plan areas, etc. A so-called “reference scenario” represents the actual soil occupation and pesticide-spraying practices used in both conventional and organic farming. A number of alternative scenarios are then defined in cooperation with stakeholders, including socio-economic conditions for developing alternative agricultural systems or targeting mitigation measures. Our integrated assessment of these scenarios combines the calculation of spatialized environmental indicators with integrated bio-economic modeling. The latter is achieved by a combined use of Soil and Water Assessment Tool (SWAT) modeling with our own purpose-built land use generator module (Generator of Land Use version 2 (GenLU2)) and an economic model developed using General Algebraic Modeling System (GAMS) for cost-effectiveness assessment. This integrated approach is applied to two embedded catchment areas (total area of 360,000 ha) within the Charente river basin (SW France). Our results show that it is possible to differentiate scenarios based on their effectiveness, represented by either evolution of pressure (agro-environmental indicators) or transport into waters (pesticide concentrations). By analyzing the implementation costs borne by farmers, it is possible to identify the most cost-effective scenarios at sub-basin and other aggregated levels (WFD hydrological entities, sensitive areas). Relevant results and indicators are fed into a specifically designed database. Data warehousing is used to provide analyses and outputs at all thematic, temporal, or spatial aggregated levels, defined by the stakeholders (type of crops, herbicides, WFD areas, years), using Spatial On-Line Analytical Processing (SOLAP) tools. The aim of this approach is to allow public policy makers to make more informed and reasoned decisions when managing sensitive areas and/or implementing mitigation measures.
Afficher plus [+] Moins [-]Integrated modeling of agricultural scenarios (IMAS) to support pesticide action plans: the case of the Coulonge drinking water catchment area (SW France) Texte intégral
2017
Vernier, Françoise | Leccia-Phelpin, Odile | Lescot, Jean-Marie | Minette, Sébastien | Miralles, André | Barberis, Delphine | Scordia, Charlotte | Kuentz-Simonet, Vanessa | Tonneau, Jean-Philippe
Non-point source pollution is a cause of major concern within the European Union. This is reflected in increasing public and political focus on a more sustainable use of pesticides, as well as a reduction in diffuse pollution. Climate change will likely to lead to an even more intensive use of pesticides in the future, affecting agriculture in many ways. At the same time, the Water Framework Directive (WFD) and associated EU policies called for a “good” ecological and chemical status to be achieved for water bodies by the end of 2015, currently delayed to 2021–2027 due to a lack of efficiency in policies and timescale of resilience for hydrosystems, especially groundwater systems. Water managers need appropriate and user-friendly tools to design agro-environmental policies. These tools should help them to evaluate the potential impacts of mitigation measures on water resources, more clearly define protected areas, and more efficiently distribute financial incentives to farmers who agree to implement alternative practices. At present, a number of reports point out that water managers do not use appropriate information from monitoring or models to make decisions and set environmental action plans. In this paper, we propose an integrated and collaborative approach to analyzing changes in land use, farming systems, and practices and to assess their effects on agricultural pressure and pesticide transfers to waters. The integrated modeling of agricultural scenario (IMAS) framework draws on a range of data and expert knowledge available within areas where a pesticide action plan can be defined to restore the water quality, French “Grenelle law” catchment areas, French Water Development and Management Plan areas, etc. A so-called “reference scenario” represents the actual soil occupation and pesticide-spraying practices used in both conventional and organic farming. A number of alternative scenarios are then defined in cooperation with stakeholders, including socio-economic conditions for developing alternative agricultural systems or targeting mitigation measures. Our integrated assessment of these scenarios combines the calculation of spatialized environmental indicators with integrated bio-economic modeling. The latter is achieved by a combined use of Soil and Water Assessment Tool (SWAT) modeling with our own purpose-built land use generator module (Generator of Land Use version 2 (GenLU2)) and an economic model developed using General Algebraic Modeling System (GAMS) for cost-effectiveness assessment. This integrated approach is applied to two embedded catchment areas (total area of 360,000 ha) within the Charente river basin (SW France). Our results show that it is possible to differentiate scenarios based on their effectiveness, represented by either evolution of pressure (agro-environmental indicators) or transport into waters (pesticide concentrations). By analyzing the implementation costs borne by farmers, it is possible to identify the most cost-effective scenarios at sub-basin and other aggregated levels (WFD hydrological entities, sensitive areas). Relevant results and indicators are fed into a specifically designed database. Data warehousing is used to provide analyses and outputs at all thematic, temporal, or spatial aggregated levels, defined by the stakeholders (type of crops, herbicides, WFD areas, years), using Spatial On-Line Analytical Processing (SOLAP) tools. The aim of this approach is to allow public policy makers to make more informed and reasoned decisions when managing sensitive areas and/or implementing mitigation measures.
Afficher plus [+] Moins [-]Integrated modeling of agricultural scenarios (IMAS) to support pesticide action plans: the case of the Coulonge drinking water catchment area (SW France) Texte intégral
2017
Vernier, Françoise | Leccia-Phelpin, Odile | Lescot, Jean-Marie | Minette, Sebastien | Miralles, A. | Barberis, Delphine | Scordia, C. | Kuentz Simonet, V. | Tonneau, J.P.
Non-point source pollution is a cause of major concern within the European Union. This is reflected in increasing public and political focus on a more sustainable use of pesticides, as well as a reduction in diffuse pollution. Climate change will likely to lead to an even more intensive use of pesticides in the future, affecting agriculture in many ways. At the same time, the Water Framework Directive (WFD) and associated EU policies called for a “good” ecological and chemical status to be achieved for water bodies by the end of 2015, currently delayed to 2021–2027 due to a lack of efficiency in policies and timescale of resilience for hydrosystems, especially groundwater systems. Water managers need appropriate and user-friendly tools to design agro-environmental policies. These tools should help them to evaluate the potential impacts of mitigation measures on water resources, more clearly define protected areas, and more efficiently distribute financial incentives to farmers who agree to implement alternative practices. At present, a number of reports point out that water managers do not use appropriate information from monitoring or models to make decisions and set environmental action plans. In this paper, we propose an integrated and collaborative approach to analyzing changes in land use, farming systems, and practices and to assess their effects on agricultural pressure and pesticide transfers to waters. The integrated modeling of agricultural scenario (IMAS) framework draws on a range of data and expert knowledge available within areas where a pesticide action plan can be defined to restore the water quality, French “Grenelle law” catchment areas, French Water Development and Management Plan areas, etc. A so-called “reference scenario” represents the actual soil occupation and pesticide-spraying practices used in both conventional and organic farming. A number of alternative scenarios are then defined in cooperation with stakeholders, including socio-economic conditions for developing alternative agricultural systems or targeting mitigation measures. Our integrated assessment of these scenarios combines the calculation of spatialized environmental indicators with integrated bio-economic modeling. The latter is achieved by a combined use of Soil and Water Assessment Tool (SWAT) modeling with our own purpose-built land use generator module (Generator of Land Use version 2 (GenLU2)) and an economic model developed using General Algebraic Modeling System (GAMS) for cost-effectiveness assessment. This integrated approach is applied to two embedded catchment areas (total area of 360,000 ha) within the Charente river basin (SW France). Our results show that it is possible to differentiate scenarios based on their effectiveness, represented by either evolution of pressure (agro-environmental indicators) or transport into waters (pesticide concentrations). By analyzing the implementation costs borne by farmers, it is possible to identify the most cost-effective scenarios at sub-basin and other aggregated levels (WFD hydrological entities, sensitive areas). Relevant results and indicators are fed into a specifically designed database. Data warehousing is used to provide analyses and outputs at all thematic, temporal, or spatial aggregated levels, defined by the stakeholders (type of crops, herbicides, WFD areas, years), using Spatial On-Line Analytical Processing (SOLAP) tools. The aim of this approach is to allow public policy makers to make more informed and reasoned decisions when managing sensitive areas and/or implementing mitigation measures.
Afficher plus [+] Moins [-]Integrated modeling of agricultural scenarios (IMAS) to support pesticide action plans: the case of the Coulonge drinking water catchment area (SW France) Texte intégral
2017
Vernier F. | Leccia-Phelpin O. | Lescot J.M. | Minette S. | Miralles A. | Barberis D. | Scordia C. | Kuentz-Simonet V. | Tonneau J.P.
Non-point source pollution is a cause of major concern within the European Union. This is reflected in increasing public and political focus on a more sustainable use of pesticides, as well as a reduction in diffuse pollution. Climate change will likely to lead to an even more intensive use of pesticides in the future, affecting agriculture in many ways. At the same time, the Water Framework Directive (WFD) and associated EU policies called for a “good” ecological and chemical status to be achieved for water bodies by the end of 2015, currently delayed to 2021–2027 due to a lack of efficiency in policies and timescale of resilience for hydrosystems, especially groundwater systems. Water managers need appropriate and user-friendly tools to design agro-environmental policies. These tools should help them to evaluate the potential impacts of mitigation measures on water resources, more clearly define protected areas, and more efficiently distribute financial incentives to farmers who agree to implement alternative practices. At present, a number of reports point out that water managers do not use appropriate information from monitoring or models to make decisions and set environmental action plans. In this paper, we propose an integrated and collaborative approach to analyzing changes in land use, farming systems, and practices and to assess their effects on agricultural pressure and pesticide transfers to waters. The integrated modeling of agricultural scenario (IMAS) framework draws on a range of data and expert knowledge available within areas where a pesticide action plan can be defined to restore the water quality, French “Grenelle law” catchment areas, French Water Development and Management Plan areas, etc. A so-called “reference scenario” represents the actual soil occupation and pesticide-spraying practices used in both conventional and organic farming. A number of alternative scenarios are then defined in cooperation with stakeholders, including socio-economi
Afficher plus [+] Moins [-]Integrated modeling of agricultural scenarios (IMAS) to support pesticide action plans: the case of the Coulonge drinking water catchment area (SW France) | Modélisation intégrée de scénarios agricoles (IMAS) pour l'aide à la décision publique : le cas de l'aire d'alimentation de captage de Coulonge St Hippolyte (SO France) Texte intégral
2017
Vernier, Françoise | Leccia-Phelpin, Odile | Lescot, Jean-Marie | Minette, Sebastien | Miralles, A. | Barberis, Delphine | Scordia, C. | Kuentz Simonet, V. | Tonneau, J.P. | Environnement, territoires et infrastructures (UR ETBX) ; Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA) | CHAMBRE REGIONALE D'AGRICULTURE MIGNALOUX BEAUVOIR FRA ; Partenaires IRSTEA ; Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA) | Territoires, Environnement, Télédétection et Information Spatiale (UMR TETIS) ; Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-AgroParisTech-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Centre National de la Recherche Scientifique (CNRS)
[Departement_IRSTEA]Territoires [TR1_IRSTEA]DTAM [Axe_IRSTEA]DTAM-QT2-ADAPTATION [TR2_IRSTEA]SYNERGIE | International audience | Non-point source pollution is a cause of major concern within the European Union. This is reflected in increasing public and political focus on a more sustainable use of pesticides, as well as a reduction in diffuse pollution. Climate change will likely to lead to an even more intensive use of pesticides in the future, affecting agriculture in many ways. At the same time, the Water Framework Directive (WFD) and associated EU policies called for a “good” ecological and chemical status to be achieved for water bodies by the end of 2015, currently delayed to 2021–2027 due to a lack of efficiency in policies and timescale of resilience for hydrosystems, especially groundwater systems. Water managers need appropriate and user-friendly tools to design agro-environmental policies. These tools should help them to evaluate the potential impacts of mitigation measures on water resources, more clearly define protected areas, and more efficiently distribute financial incentives to farmers who agree to implement alternative practices. At present, a number of reports point out that water managers do not use appropriate information from monitoring or models to make decisions and set environmental action plans. In this paper, we propose an integrated and collaborative approach to analyzing changes in land use, farming systems, and practices and to assess their effects on agricultural pressure and pesticide transfers to waters. The integrated modeling of agricultural scenario (IMAS) framework draws on a range of data and expert knowledge available within areas where a pesticide action plan can be defined to restore the water quality, French “Grenelle law” catchment areas, French Water Development and Management Plan areas, etc. A so-called “reference scenario” represents the actual soil occupation and pesticide-spraying practices used in both conventional and organic farming. A number of alternative scenarios are then defined in cooperation with stakeholders, including socio-economic conditions for developing alternative agricultural systems or targeting mitigation measures. Our integrated assessment of these scenarios combines the calculation of spatialized environmental indicators with integrated bio-economic modeling. The latter is achieved by a combined use of Soil and Water Assessment Tool (SWAT) modeling with our own purpose-built land use generator module (Generator of Land Use version 2 (GenLU2)) and an economic model developed using General Algebraic Modeling System (GAMS) for cost-effectiveness assessment. This integrated approach is applied to two embedded catchment areas (total area of 360,000 ha) within the Charente river basin (SW France). Our results show that it is possible to differentiate scenarios based on their effectiveness, represented by either evolution of pressure (agro-environmental indicators) or transport into waters (pesticide concentrations). By analyzing the implementation costs borne by farmers, it is possible to identify the most cost-effective scenarios at sub-basin and other aggregated levels (WFD hydrological entities, sensitive areas). Relevant results and indicators are fed into a specifically designed database. Data warehousing is used to provide analyses and outputs at all thematic, temporal, or spatial aggregated levels, defined by the stakeholders (type of crops, herbicides, WFD areas, years), using Spatial On-Line Analytical Processing (SOLAP) tools. The aim of this approach is to allow public policy makers to make more informed and reasoned decisions when managing sensitive areas and/or implementing mitigation measures.
Afficher plus [+] Moins [-]Tolerance of Japanese knotweed s.l. to soil artificial polymetallic pollution: early metabolic responses and performance during vegetative multiplication Texte intégral
2017
Michalet, Serge | Rouifed, Soraya | Pellassa-Simon, Thomas | Fusade-Boyer, Manon | Meiffren, Guillaume | Nazaret, Sylvie | Piola, Florence | Laboratoire d'Ecologie Microbienne - UMR 5557 (LEM) ; Institut National de la Recherche Agronomique (INRA)-Université Claude Bernard Lyon 1 (UCBL) ; Université de Lyon-Université de Lyon-Ecole Nationale Vétérinaire de Lyon (ENVL)-VetAgro Sup - Institut national d'enseignement supérieur et de recherche en alimentation, santé animale, sciences agronomiques et de l'environnement (VAS)-Centre National de la Recherche Scientifique (CNRS) | LEHNA - Laboratoire d'Ecologie des Hydrosystèmes Naturels et Anthropisés [équipe EVZH] (LEHNA EVZH) ; Laboratoire d'Ecologie des Hydrosystèmes Naturels et Anthropisés (LEHNA) ; Université Claude Bernard Lyon 1 (UCBL) ; Université de Lyon-Université de Lyon-École Nationale des Travaux Publics de l'État (ENTPE)-Centre National de la Recherche Scientifique (CNRS)-Université Claude Bernard Lyon 1 (UCBL) ; Université de Lyon-Université de Lyon-École Nationale des Travaux Publics de l'État (ENTPE)-Centre National de la Recherche Scientifique (CNRS) | Laboratoire d'Ecologie des Hydrosystèmes Naturels et Anthropisés (LEHNA) ; Université Claude Bernard Lyon 1 (UCBL) ; Université de Lyon-Université de Lyon-École Nationale des Travaux Publics de l'État (ENTPE)-Centre National de la Recherche Scientifique (CNRS) | Initiative Structurante EC2CO (Ecosphere Continentale et Cotiere); ECODYN (Ecotoxicologie, Ecodynamique des contaminants); FR3728 BioEnviS
International audience | The expansion of invasive Japanese Knotweed s.l. is of particular concern because of its aptitudes to rapidly colonize diverse environments, especially anthropized habitats generally characterized by their pollution with heavy metals. Whether the presence of heavy metals impacts the performance traits of this plant is a central question to better understand its invasive properties, though no controlled approach to assess these effects were yet reported. In this aim, we undertook greenhouse experiments where rhizome fragments of Japanese Knotweed s.l. (Fallopia japonica and Fallopia x bohemica) were grown during 1 and 3 months, in soil pot artificially polluted or not with heavy metals added in mixture (Cd, Cr, Pb, Zn). Our results showed that (i) the presence of heavy metals delayed rhizome regeneration and induced lowered plant part weights but did not affect plant height after three months; (ii) the effect of metals on the metabolic profiles of belowground part extracts was only detectable after 1 month and not after 3 months of growth, though, it was possible to highlight the effect of metals independently of time and genotype for root extracts, and torosachrysone seemed to be the most induced compound; (iii) the hybrid genotype tested was able to accumulate relatively high concentrations of metals, over or close to the highest reported ones for this plant for Cr, Cd and Zn, whereas Pb was not accumulated. These findings evidence that the presence of heavy metals in soil has a low impact on Fallopia spp. overall performance traits during rhizome regeneration, and has a rather stimulating effect on plant growth depending on pollution level.
Afficher plus [+] Moins [-]Lipopeptides produced by Bacillus subtilis as new biocontrol products against fusariosis in ornamental plants Texte intégral
2017
Mihalache, Gabriela | Balaes, Tiberius | Gostin, Irina | Stefan, Marius | Coutte, François | Krier, François | Institut Charles Viollette (ICV) - EA 7394 (ICV) ; Université d'Artois (UA)-Institut National de la Recherche Agronomique (INRA)-Université du Littoral Côte d'Opale (ULCO)-Institut Supérieur d'Agriculture-Université de Lille | BioEcoAgro - UMR transfrontalière INRAe - UMRT1158 ; Université d'Artois (UA)-Université de Liège = University of Liège = Universiteit van Luik = Universität Lüttich (ULiège)-Université de Picardie Jules Verne (UPJV)-Université du Littoral Côte d'Opale (ULCO)-Université de Lille-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-JUNIA (JUNIA) ; Université catholique de Lille (UCL)-Université catholique de Lille (UCL) | BioEcoAgro - Equipe 4 - Secondary metabolites of microbial origin ; BioEcoAgro - UMR transfrontalière INRAe - UMRT1158 ; Université d'Artois (UA)-Université de Liège = University of Liège = Universiteit van Luik = Universität Lüttich (ULiège)-Université de Picardie Jules Verne (UPJV)-Université du Littoral Côte d'Opale (ULCO)-Université de Lille-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-JUNIA (JUNIA) ; Université catholique de Lille (UCL)-Université catholique de Lille (UCL)-Université d'Artois (UA)-Université de Liège = University of Liège = Universiteit van Luik = Universität Lüttich (ULiège)-Université de Picardie Jules Verne (UPJV)-Université du Littoral Côte d'Opale (ULCO)-Université de Lille-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-JUNIA (JUNIA) ; Université catholique de Lille (UCL)-Université catholique de Lille (UCL)
International audience
Afficher plus [+] Moins [-]