Affiner votre recherche
Résultats 1301-1310 de 1,908
A detailed investigation of ambient aerosol composition and size distribution in an urban atmosphere
2013
Kuzu, S Levent | Saral, Arslan | Demir, Selami | Summak, Gülsüm | Demir, Göksel
This research was executed between March 2009 and March 2010 to monitor particulate matter size distribution and its composition in Istanbul. Particulate matter composition was determined using ion chromatography and inductively coupled plasma optical emission spectrometry. The sampling point is adjacent to a crowded road and the Bosporus Strait. Two prevailing particulate modes are found throughout PM₁₀ by sampling with a nine-stage low-volume cascade impactor. First mode in the fine mode is found to be between 0.43 and 0.65 μm, whereas the other peak was observed between 3.3 and 4.7 μm, referring to the coarse mode. The mean PM₁₀ concentration was determined as 41.2 μg/m³, with a standard deviation of 16.92 μg/m³. PM₀.₄₃ had the highest mean concentration value of 10.67 μg/m³, making up nearly one fourth of the total PM₁₀ mass. For determining the effect of traffic on particulate matter (PM) composition and distribution, four different sampling cycles were applied: entire day, nighttime, rush hour, and rush hour at weekdays. SO ₄ ⁻² and organic carbon/elemental carbon proportions are found to be lower in night samples, representing a decrease in traffic. The long-range transports of dust storms were observed during the sampling periods. Their effects were determined analytically and their route models were run by the HYSPLIT model and validated through satellite photographs taken by the NASA Earth Observatory.
Afficher plus [+] Moins [-]Using iron-loaded sepiolite obtained by adsorption as a catalyst in the electro-Fenton oxidation of Reactive Black 5
2013
Iglesias, O. | Fernández de Dios, M. A. | Pazos, M. | Sanromán, M. A.
This study explores the possibility of using iron-loaded sepiolite, obtained by recovering iron from polluted water, as a catalyst in the electro-Fenton oxidation of organic pollutants in textile effluents. The removal of iron ions from aqueous solution by adsorption on sepiolite was studied in batch tests at iron concentrations between 100 and 1,000 ppm. Electro-Fenton experiments were carried out in an electrochemical cell with a working volume of 0.15 L, an air flow of 1 L/min, and 3 g of iron-loaded sepiolite. An electric field was applied using a boron-doped diamond anode and a graphite sheet cathode connected to a direct current power supply with a constant potential drop. Reactive Black 5 (100 mg/L) was selected as the model dye. The adsorption isotherms proved the ability of the used adsorbent. The removal of the iron ion by adsorption on sepiolite was in the range of 80-100 % for the studied concentration range. The Langmuir and Freundlich isotherms were found to be applicable in terms of the relatively high regression values. Iron-loaded sepiolite could be used as an effective heterogeneous catalyst for the degradation of organic dyes in the electro-Fenton process. Successive batch processes were performed at optimal working conditions (5 V and pH 2). The results indicate the suitability of the proposed combined process, adsorption to iron remediation followed by the application of the obtained iron-loaded sepiolite to the electro-Fenton technique, to oxidize polluted effluents.
Afficher plus [+] Moins [-]Removal of Pb(II) from water using keratin colloidal solution obtained from wool
2013
Sekimoto, Yuri | Okiharu, Tomoki | Nakajima, Haruka | Fujii, Toshihiro | Shirai, Koji | Moriwaki, Hiroshi
The aim of this study is to investigate the use of keratin colloidal solution, which was obtained from wool, for the removal of Pb(II) from water. The addition of keratin colloidal solution (15 g L(-1), 0.30 mL) to a Pb(II) solution (1.0 mM, 0.90 mL, pH 5.0) resulted in the formation and precipitation of a Pb-keratin aggregate. Measurement of the Pb(II) and protein concentrations in the supernatant solution revealed that 88 and 99 % of the Pb(II) and keratin protein were removed from the solution, respectively. The maximum Pb(II) uptake capacity of keratin in the colloidal solution was 43.3 mg g(-1). In addition, the Pb-keratin aggregate was easily decomposed via the addition of nitric acid, which enabled the recovery of Pb(II). However, aggregation did not occur in solutions with Pb(II) concentrations below 0.10 mM. Therefore, we used a keratin colloidal solution encapsulated in a dialysis cellulose tube to remove Pb(II) from 0.10 mM solutions, which enabled the removal of 95 % of the Pb(II). From these results, we conclude that keratin colloidal solution is useful for the treatment of water polluted with Pb(II).
Afficher plus [+] Moins [-]Deposition in St. Mark's Basilica of Venice
2013
Morabito, E. | Zendri, E. | Piazza, R. | Ganzerla, R. | Montalbani, S. | Marcoleoni, E. | Bonetto, F. | Scandella, A. | Barbante, C. | Gambaro, A.
Atmospheric pollutants may cause damage to monuments and historical buildings. Besides air contaminants, soluble salts are also responsible for stone deterioration and decay in outdoor and indoor monuments. The problem of how to conserve works of arts thus requires a deep knowledge of contaminants' concentration and distribution inside buildings. In this work, water-soluble ions inside St. Mark's Basilica in Venice were studied, with the aim of understanding their principal source and distribution inside the building. With the aid of Fourier transform infrared spectroscopy and scanning electron microscopy analysis, the interaction between ions and surface's material was also investigated. Ion chromatographic analysis of depositions highlighted a large amount of “deteriorating agents” such as sulphates and chlorides. A possible source in the innermost area of the basilica has been found for formates and nitrates. On the contrary, a decrease of chloride, from the entrance to the innermost area, has been found, which indicates that the source is outside the building. It is emphasized that different contaminants behave differently on different material, and the effect of pollution inside churches and monuments is not easy to predict. Wood and brick seem to react differently than stone and mortar to the damaging action of salts and pollutants. The present work should be considered a useful tool for the future preservation of St. Mark's Basilica in Venice.
Afficher plus [+] Moins [-]Spontaneous vegetation succession at different central European mining sites: a comparison across seres
2013
Prach, Karel | Lencová, Kamila | Řehounková, Klára | Dvořáková, Helena | Jírová, Alena | Konvalinková, Petra | Mudrák, Ondřej | Novák, Jan | Trnková, Romana
We performed detrended correspondence analysis (DCA) ordination to compare seven successional seres running in stone quarries, coal mining spoil heaps, sand and gravel pits, and extracted peatlands in the Czech Republic in central Europe. In total, we obtained 1,187 vegetation samples containing 705 species. These represent various successional stages aged from 1 to 100 years. The successional seres studied were more similar in their species composition in the initial stages, in which synathropic species prevailed, than in later successional stages. This vegetation differentiation was determined especially by local moisture conditions. In most cases, succession led to a woodland, which usually established after approximately 20 years. In very dry or wet places, by contrast, where woody species were limited, often highly valuable, open vegetation developed. Except in the peatlands, the total number of species and the number of target species increased during succession. Participation of invasive aliens was mostly unimportant. Spontaneous vegetation succession generally appears to be an ecologically suitable and cheap way of ecosystem restoration of heavily disturbed sites. It should, therefore, be preferred over technical reclamation.
Afficher plus [+] Moins [-]Spatial distribution of mercury in topsoil from five regions of China
2013
Shi, Jian-bo | Meng, Mei | Shao, Jun-juan | Zhang, Ke-gang | Zhang, Qing-hua | Jiang, Gui-bin
The concentrations and distributions of mercury (Hg) in topsoil from four provinces and one municipality in China were investigated. A total of 1,254 samples were collected and analyzed. The average concentrations of Hg were 0.064 mg kg⁻¹ for Liaoning Province, 0.100 mg kg⁻¹ for Jiangsu Province, 0.110 mg kg⁻¹ for Zhejiang Province, 0.154 mg kg⁻¹ for Sichuan Province, and 0.098 mg kg⁻¹ for Chongqing Municipality. Although differences were found among the ranges of Hg concentrations, the average values for each region were similar with other published data. The concentrations of Hg in topsoil varied largely upon the sampling locations. More than 80 % of the soil samples from Liaoning Province, Jiangsu Province, Zhejiang Province, and Chongqing Municipality, were ranked Grade I by the China Environmental Quality Standard for Soils, which can be considered as not contaminated by Hg. The concentrations of Hg in 0.3–0.4 % of soils collected from Jiangsu Province, Zhejiang Province and Chongqing Municipality exceeded the limitation for Grade III, indicating the contamination of Hg in these sites. The sources and potential risks of Hg in these sites should be brought to attention and further investigated.
Afficher plus [+] Moins [-]Glutathione and its dependent enzymes’ modulatory responses to toxic metals and metalloids in fish—a review
2013
Toxic metals and metalloid are being rapidly added from multiple pathways to aquatic ecosystem and causing severe threats to inhabiting fauna including fish. Being common in all the type of aquatic ecosystems such as freshwater, marine and brackish water fish are the first to get prone to toxic metals and metalloids. In addition to a number of physiological/biochemical alterations, toxic metals and metalloids cause enhanced generation of varied reactive oxygen species (ROS) ultimately leading to a situation called oxidative stress. However, as an important component of antioxidant defence system in fish, the tripeptide glutathione (GSH) directly or indirectly regulates the scavenging of ROS and their reaction products. Additionally, several other GSH-associated enzymes such as GSH reductase (GR, EC 1.6.4.2), GSH peroxidase (EC 1.11.1.9), and GSH sulfotransferase (glutathione-S-transferase (GST), EC 2.5.1.18) cumulatively protect fish against ROS and their reaction products accrued anomalies under toxic metals and metalloids stress conditions. The current review highlights recent research findings on the modulation of GSH, its redox couple (reduced glutathione/oxidised glutathione), and other GSH-related enzymes (GR, glutathione peroxidase, GST) involved in the detoxification of harmful ROS and their reaction products in toxic metals and metalloids-exposed fish.
Afficher plus [+] Moins [-]Investigating the potential of functionalized MCM-41 on adsorption of Remazol Red dye
2013
Santos, Danilo Oliveira | de Lourdes Nascimento Santos, Maria | Costa, José Arnaldo Santana | de Jesus, Roberta Anjos | Navickiene, Sandro | Sussuchi, Eliana Midori | de Mesquita, Maria Eliane
The modification of MCM-41 was performed with 3-aminopropropyltrimethoxysilane. The structural order and textural properties of the synthesized materials were studied by X-ray diffraction, Fourier transform infrared spectroscopy, thermogravimetry/differential thermogravimetry, nitrogen adsorption, and desorption analysis. The adsorption capacity of NH₂-MCM-41 was studied with Remazol Red dye. The following parameters were studied in the adsorption process: pH, temperature, adsorbent dosage, and initial concentration. The desorption process was studied in different concentrations of NaOH solutions. The Freundlich isotherm model was found to be fit with the equilibrium isotherm data. Kinetics of adsorption follows the modified Avrami rate equation. The maximum adsorption capacity was estimated to be 45.9 mg g⁻¹, with removal of the dye of 99.1 %. The NH₂-MCM-41 material exhibited high desorption capacity with 98.1 %.
Afficher plus [+] Moins [-]Environmental effects of nanosilver: impact on castor seed germination, seedling growth, and plant physiology
2013
Yasur, Jyothsna | Rani, Pathipati Usha
Increasing use of nanoparticles in daily products is of great concern today, especially when their positive and negative impact on environment is not known. Hence, in current research, we have studied the impact of silver nanoparticle (AgNPs) and silver nitrate (AgNO3) application on seed germination, root, and shoot length of castor bean, Ricinus communis L. plant. Silver nanoparticles had no significant effects on seedling growth even at higher concentration of 4,000 mg L(-1), while the silver in bulk form as AgNO3 applied on the castor bean seeds inhibited the seed germination. Silver uptake in seedlings of the castor seeds on treatment with both the forms of silver was confirmed through atomic absorption spectroscopy studies. The silver nanoparticle and silver nitrate application to castor seeds also caused an enhanced enzymatic activity of ROS enzymes and phenolic content in castor seedlings. High-performance liquid chromatography analysis of individual phenols indicated enhanced content of parahydroxy benzoic acid. These kinds of studies are of great interest in order to unveil the movement and accumulation of nanoparticles in plant tissues for assessing future applications in the field or laboratory.
Afficher plus [+] Moins [-]Batch and continuous biodegradation of Amaranth in plain distilled water by P. aeruginosa BCH and toxicological scrutiny using oxidative stress studies
2013
Jadhav, Shekhar B. | Patil, Nilambari S. | Watharkar, Anuprita D. | Apine, Onkar A. | Jadhav, Jyoti P.
Bacterium Pseudomonas aeruginosa BCH was able to degrade naphthylaminesulfonic azo dye Amaranth in plain distilled water within 6 h at 50 mg l⁻¹ dye concentration. Studies were carried out to find the optimum physical conditions and which came out to be pH 7 and temperature 30 °C. Amaranth could also be decolorized at concentration 500 mg l⁻¹. Presence of Zn and Hg ions could strongly slow down the decolorization process, whereas decolorization progressed rapidly in presence of Mn. Decolorization rate was increased with increasing cell mass. Induction in intracellular and extracellular activities of tyrosinase and NADH-DCIP reductase along with intracellular laccase and veratryl alcohol oxidase indicated their co-ordinate action during dye biodegradation. Up-flow bioreactor studies with alginate immobilized cells proved the capability of strain to degrade Amaranth in continuous process at 20 ml h⁻¹ flow rate. Various analytical studies viz.—HPLC, HPTLC, and FTIR gave the confirmation that decolorization was due to biodegradation. From GC-MS analysis, various metabolites were detected, and possible degradation pathway was predicted. Toxicity studies carried out with Allium cepa L. through the assessment of various antioxidant enzymes viz. sulphur oxide dismutase, guaiacol peroxidase, and catalase along with estimation of lipid peroxidation and protein oxidation levels conclusively demonstrated that oxidative stress was generated by Amaranth.
Afficher plus [+] Moins [-]