Affiner votre recherche
Résultats 1321-1330 de 3,189
Modeling the Phenanthrene Decomposition Adsorbed in Soil by Ozone: Model Characterization and Experimental Validation
2015
Rodriguez-Aguilar, J. | Garcia-Gonzalez, A. | Poznyak, T. | Chairez, I. | Poznyak, A.
This paper analyzes the mathematical modeling procedure to describe the decomposition of adsorbed phenanthrene in prototypical and real soil samples (sand and agricultural soil, respectively) by ozone. The modeling scheme considered a set of ordinary differential equations with time varying coefficients. This model used the adsorbed ozone in the soil, the ozone reacting with the contaminant and the phenanthrene concentration in the soil sample. The main parameters involved in the mathematical model included a time varying ozone saturation function (k ₛₐₜ (t)) and reaction constants (k ᵣ). These parameters were calculated using the ozone concentration variation at the reactor output, named as ozonogram, and the measurements of phenanthrene decomposition through ozonation. The model was validated using two series of experiments: (1) soil saturated with ozone in the absence of the contaminant and (2) soil artificially contaminated with phenanthrene. In both cases, the proposed parametric identification method yields to validate the mathematical model. This fact was confirmed by the correspondence between numerical simulations and experimental data. In particular, total decomposition of phenanthrene adsorbed in two different systems (ozone-sand and ozone-agricultural soil) was obtained after 15 and 30 min of reaction, respectively. This difference was obtained as a consequence of soil physicochemical characteristics: specific surface area and pore volume. The ozonation reaction rate constants of phenanthrene in the sand and agricultural soil were calculated using the same parameter identification scheme.
Afficher plus [+] Moins [-]Benzotriazoles in the Aquatic Environment: a Review of Their Occurrence, Toxicity, Degradation and Analysis
2015
Alotaibi, M. D. | McKinley, A. J. | Patterson, B. M. | Reeder, A. Y.
Benzotriazoles (BTs) are an emerging class of environmental pollutants used in a wide range of industrial applications. Benzotriazole (BTri) and 5-methylbenzotriazole (5-MeBT) have recently been detected in water supplies around the world, and are thus attracting the attention of many environmental researchers. The focus of this review is on assessing contemporary methods to detect BTs using high-performance liquid chromatography (HPLC), and providing information regarding their occurrence, degradation and toxicity within the environment.
Afficher plus [+] Moins [-]Scanning Cadmium Photosynthetic Responses of Elephantopus mollis for Potential Phytoremediation Practices
2015
Silveira, Fernanda Schmidt | Azzolini, Marisa | Divan, Armando Molina, Jr
Photosynthetic process is a good approach to discriminate cadmium-tolerant species, because it is reported as one of the most sensitive processes. Our goal was to measure Elephantopus mollis Kunth (Asteraceae) tolerance, determining the interference of Cd on the photosynthetic process. For this, a hydroponic experiment design was conducted in nutrition solution with concentrations of 0 (control), 10, 50, and 100 μM of cadmium (Cd). Measures of photosynthesis performance were obtained, for example, gas exchange, photosystem integrity, chlorophyll content, leaf growth rate, root length, and dry weight. In addition, cadmium and zinc concentrations were measured. Furthermore, results were linked to phytoremediation potential. Our specific questions were as follows: (1) Can the photosynthetic apparatus of E. mollis deal with cadmium stress? (2) Is E. mollis able to accumulate cadmium and maintain zinc level? (3) Is E. mollis a tolerant or sensitive species? (4) Can any phytoremediation practice be suggested from these results? Our results showed that E. mollis can deal with cadmium toxicity up to 10 μM Cd. Moreover, this plant is a potential hyperaccumulator, which can accumulate 248 mg Cd kg⁻¹ dry weight. However, at concentrations of 50 and 100 μM Cd, this species was sensitive and cadmium toxicity affected both biochemistry and photochemistry phases of photosynthesis on account of negative changes on gas exchange, fluorescence chlorophyll, and chlorophyll content. Nevertheless, these results did not compromise the research about its tolerance at lower concentrations of cadmium.
Afficher plus [+] Moins [-]The Removal of Antimony by Novel NZVI-Zeolite: the Role of Iron Transformation
2015
Zhou, Zhe | Dai, Chaomeng | Zhou, Xuefei | Zhao, Jianfu | Zhang, Yalei
Nanoscale zero valent iron (NZVI) supported on beta zeolite was synthesized by refined method for the removal of Sb(III) and characterized with TEM-EDX, XRD, XPS, BET, and Zetasizer. The results showed that NZVI existed as apparent ones doping on surface of beta zeolite (average size 20–40 nm) and fine ones formed in structure of beta zeolite (<1 nm). Compared to NZVI, NZVI-zeolite showed enhanced antimony removal ability and higher iron efficiency due to its better dispersibility and smaller size. Adsorption and reduction ability of iron played main roles in the antimony removal. The removal isotherm was better fitted by Freundlich model. According to XPS analysis, reduction of Sb(III) happened rapidly and Sb(0) took more than 80 % in final products, which was higher compared with NZI. Iron transformation accompanied with antimony removal was identified by XRD and XPS, which caused antimony reduction and facilitate further immobilization of removed antimony. The iron oxides encapsulated antimony in their own structure and beta zeolite which they adhere. The theoretical model about the process was proposed to illustrate NZVI-zeolite enhanced antimony removal ability.
Afficher plus [+] Moins [-]Effects of Polychlorinated Dibenzo-p-dioxins on Soil Nutrition, Soil CO2 Emission, and Mung Bean Seedling Growth
2015
Liu, Qiang | Chen, Yiping | Sun, Benhua
Dioxins are a group of persistent organic pollutants with varying degrees of toxicity. To determine the effects of polychlorinated dibenzo-p-dioxins pollution on soil nutrition, soil carbon dioxide (CO₂) emission, and plant growth, soils and mung bean seedlings were experimentally subjected to 1,2,3,7,8-pentachlorodibenzo-para-dioxin (PeCDD). The results showed that: (i) Low dose of PeCDD treatments led to a significant decrease in the soil organic matter content and an increase in the hydrolyzable nitrogen content, while the contents of available phosphorus and exchangeable potassium decreased significantly at high doses of PeCDD (≥20 ng kg⁻¹). (ii) The soil CO₂release rate was gradually increased from treatments with 10 to 20 ng kg⁻¹PeCDD, but decreased significantly with 30 ng kg⁻¹PeCDD treatment after 25 days exposure. With prolonged exposure time, the soil CO₂emission after all treatments declined heavily, along with the difference among different treatments. (iii) Low dose of 10 ng kg⁻¹PeCDD resulted in significant reductions of malondialdehyde (MDA) content and electrolyte leakage conductivity and increases in the contents of chlorophyll and soluble protein and fresh biomass of mung bean seedlings. On the contrary, high doses of PeCDD (≥20 ng kg⁻¹) treatments showed opposite effects on the above parameters of seedling growth. The results suggested that high doses of PeCDD contamination (≥20 ng kg⁻¹) posed potential negative effects on the cycling processes of soil nutrients, which were probably due to the inhibitory on soil microbial activity, and induced phytotoxicity on seedling growth, although slight stimulations of soil microbial activity and mung bean seedling growth were found at low doses of PeCDD. Therefore, more efforts are needed to ensure the dioxin contamination below the toxic concentration of 20 ng TEQ kg⁻¹in farmland soil.
Afficher plus [+] Moins [-]Effects of Roadside Deposition on Growth and Pollutant Accumulation by Willow (Salix miyabeana)
2015
Heintzman, Rebecca L. | Titus, John E. | Zhu, Weixing
Roadside plants have the potential to accumulate pollutants and safeguard waterways. To assess growth and pollutant accumulation of roadside plants, the willow Salix miyabeana was grown (a) in a greenhouse on soil collected at different distances from an interstate highway to test the longer-term effects of pollutant deposition as manifested in soil, and (b) in the field on reference soil placed at different distances from that highway to test the shorter-term effects of proximity to pollutant sources during a single growing season. In the first experiment, relative growth rate (RGR) increased 150 % with distance of soil collection from the roadway, from a baseline near the highway to 100 m away. Relative nitrogen and phosphorus accumulation rates were positively correlated with RGR (P <0.0001), and total contents of zinc, strontium, copper, nickel, cadmium, and lead in new shoots were also positively correlated with RGR (P <0.05). Thus more rapidly growing plants accumulated more N, P, and metals. Reduced growth for plants grown on soils collected near the roadway was associated with very high tissue concentrations of sodium and soil concentrations of chloride, implicating the deposition of deicing agents in this northern temperate roadside ecosystem. In contrast, S. miyabeana showed the opposite pattern on reference soil in the field, with RGR decreasing 31 % as distance from the roadside increased. The latter trend appears to have resulted from greater soil moisture and reduced shading near the highway. We suggest that reducing road salt applications will promote growth and pollutant accumulation by roadside vegetation.
Afficher plus [+] Moins [-]Effect of Humic Acid on Arsenic Adsorption and Pore Blockage on Iron-Based Adsorbent
2015
Fakour, Hoda | Pan, Yi-Fong | Lin, Tsair-Fuh
The effect of humic acid (HA), on the adsorption and transport of arsenic (As) onto and within a model iron oxide-based adsorbent, iron oxide-coated diatomite (IOCD), is investigated. Experimental results indicate that the adsorption of both As and HA is highly pH-dependent. As uptake was suppressed by HA, with the level of suppression increasing with HA concentration. The suppression is attributed to the partial coverage of the adsorption sites, as confirmed by elemental analysis. Adsorption energy analysis indicates that for As(III), the main interaction with IOCD is physical adsorption, whereas for As(V), it is more likely ion exchange. The presence of HA may alter the adsorption energy and interaction of As with the adsorbent, particularly at higher HA concentrations. Kinetic results indicate that HA did not affect the diffusional transport of As in systems with both As and HA. However, for IOCD preloaded with HA, the adsorption kinetics of As was significantly slower, although the As uptake was similar to the conditions of co-sorption with HA. The slower kinetics and similar equilibrium uptake of As in the HA-preloaded IOCD system may be attributed to the partial blockage of the intraparticular pores within IOCD, which slowed down the diffusion of As.
Afficher plus [+] Moins [-]Removal of p-Nitrophenol from Aqueous Solution Using Brazilian Peat: Kinetic and Thermodynamic Studies
2015
Jaerger, S. | dos Santos, A. | Fernandes, A. N. | Almeida, C. A. P.
Removal of p-nitrophenol (PNP) from aqueous solutions using fibrous peat has been investigated in this study by batch adsorption experiments. Factors that can affect the adsorption process, such as pH, temperature, initial PNP concentration and contact time, have been investigated. Fourier transform infrared (FTIR) and thermogravimetric analysis (TGA) measurements have also been obtained in order to study the adsorption mechanism of PNP by peat. The Langmuir and Freundlich equations have been applied to investigate the equilibrium. The data fitted the Langmuir isotherm well, with the maximum adsorption capacity decreasing with temperature from 23.4 to 16.1 mg g⁻¹. In general, the adsorption equilibrium was attained within 100 min. For the kinetics study, the best fit was obtained by the pseudo-second-order model instead of the pseudo-first-order model, both of which applied to the experimental data, whereas the results of intraparticle diffusion show a two-step adsorption process. The activation energy value of 70.31 kJ mol⁻¹, calculated from the Arrhenius equation, indicated a predominantly chemical adsorption, whereas the thermodynamic parameters, obtained by the van’t Hoff equation, were exothermic and spontaneous in nature.
Afficher plus [+] Moins [-]Responses of Limagne “Clay/Organic Matter-Rich” Soil Microbial Communities to Realistic Formulated Herbicide Mixtures, Including S-Metolachlor, Mesotrione, and Nicosulfuron
2015
Joly, Pierre | Bonnemoy, Frédérique | Besse-Hoggan, Pascale | Perrière, Fanny | Crouzet, Olivier | Cheviron, Nathalie | Mallet, Clarisse
Soil is a primary resource used by mankind to ensure its needs mainly through agriculture. Its sustainability is regulated by the indigenous organisms it contains such as microorganisms. Current agricultural practices employ mixtures of pesticides to ensure the crops yield and can potentially impair these non-target organisms. However despite this environmental reality, studies dealing the susceptibility of microorganisms to pesticide mixtures are scarce. In this context, we designed a 3-month microcosm study to assess the ecotoxicity of realistic herbicide mixtures of formulated S-metolachlor (Dual Gold Safeneur®), mesotrione (Callisto®), and nicosulfuron (Milagro®) on the abundance, the diversity, and the activities of microorganisms from a “clay/organic matter-rich” soil, with a particular attention given to N-cycle communities. These communities appeared to be quite resistant to realistic mixtures even if transient effects occurred on the N-cycle-related communities with an increase of ammonification and an inhibition of nitrification as a short-term effect, followed by an increase of denitrification and an accumulation of nitrates. As nitrates are known to be highly leachable with a strong pollution potential, intensive studies should be carried out at field level to conclude on this potential accumulation and its consequences. Moreover, these data now need to be compared with other agricultural soils receiving these herbicide mixtures in order to bring general conclusion on such practices.
Afficher plus [+] Moins [-]Colonial Marine Birds Influence Island Soil Chemistry Through Biotransport of Trace Elements
2015
Mallory, Mark L. | Mahon, Lewis | Tomlik, Molly D. | White, Chris | Milton, G Randy | Spooner, Ian
Marine birds are important vectors of nutrient and contaminant transfer from sea to land. In eastern Nova Scotia, Canada, colonial marine birds nest on specific nearshore islands within archipelagoes, and we predicted that soils on islands with bird colonies would have higher concentrations of selected trace elements (notably K, Ca, As, Cd, Cu, Pb, Se, Hg, and Zn) than soils on islands without colonies. In this study, common eider (Somateria mollissima), Leach’s storm petrel (Oceanodroma leucorhoa), black guillemot (Cepphus grylle), double-crested cormorant (Phalacrocorax auritus), great black-backed gull (Larus marinus), and herring gull (Larus argentatus) were considered to be the principal avian vectors for contaminant transfer. Results indicate that soils from islands with bird colonies had unique chemical compositions and commonly displayed elevated concentrations of K, Ca, Cu, Se, and Zn when compared to islands without colonies. Thus, marine birds feeding in the nearby marine zone move pollutants and nutrients from the ocean to nesting islands, potentially influencing habitat quality for coastal terrestrial species.
Afficher plus [+] Moins [-]