Affiner votre recherche
Résultats 1341-1350 de 2,498
Generalization of the MAFRAM Methodology for Semi-Volatile Organic Agro-Chemicals
2014
Batiha, Mohammad A. | Al-Makhadmeh, Leema A. | Batiha, Marwan M. | Ramadan, Ashraf | Kadhum, Abdul Amir H.
A wide variety of semi-volatile organic chemicals (SVOCs) are still in use in agricultural practices. A proper understanding of the environmental fate and ecotoxicological risk associated with these compounds can aid decision making, particularly regarding product registration and licensing. The aim of this paper is to expand the use of a previously developed Multimedia Agricultural Fate and Risk Assessment Model (MAFRAM) to SVOCs by adopting the fugacity concept as a second criterion to the existing MAFRAM partitioning criterion (i.e., aquivalence). Volatilization processes from surface compartments into the atmosphere were also included. For example, the application of the generalized model was illustrated using an average annual application rate of 4.48 kg/ha of chlorpyrifos over a typical homogeneous region. Chlorpyrifos emissions were assumed to take place in three environmental compartments (i.e., soil, air, and aboveground plants) with fractions of 0.1, 0.3, and 0.6, respectively. The trends seen in the modeling results were in good agreement with the existing experimental data. Validation issues in MAFRAM were also discussed. Comprehensive experimental validation is unattainable because of the large scale of the areas covered, the lack of boundaries for the system considered, and the uncertainty in the input parameters.
Afficher plus [+] Moins [-]Molecular Docking of Laccase Protein from Bacillus Safensis DSKK5 Isolated from Earthworm gut: A Novel Method to Study dye Decolorization Potential
2014
Singh, Deepti | Sharma, Krishna Kant | Jacob, Shenu | Gakhar, S. K.
The bacterial communities in the intestinal tracts of earthworm were isolated by culture-dependent approaches. In total, 72 cultures were isolated and purified from the gut of an earthworm under aerobic culture condition, out of which 25 isolates were laccase positive. Isolate 33, a good laccase producer was identified as Bacillus safensis DSKK5, using both biochemical and molecular approaches. It was found to produce maximum laccase activity at 0.75 % of wheat bran, 37 °C, and pH 6.2. Further, copper sulfate and copper chloride showed a maximum laccase production. In order to understand the affinity of binding and interaction between toxic dyes and bacterial laccase, homology models were generated. The resulted models were further validated and used for docking studies with commonly used industrial dyes. Molecular docking using CCDC GOLD software gave a good score with all the textile dyes. Further, validation using molsoft ICM software showed a good binding energy of −104.25, −106.00, −113.98, and −100.36, with commercial dyes, i.e., procion blue, procion green, procion red, and reactive yellow 86, respectively. Experimental data showed a maximum decolorization with procion green (85.66 %) and procion red (85.58 %), which validate the molsoft ICM results, i.e., −106.00 and −113.98, respectively.
Afficher plus [+] Moins [-]Nonideal Transport of Contaminants in Heterogeneous Porous Media: 11. Testing the Experiment Condition Dependency of the Continuous Distribution Rate Model for Sorption–Desorption
2014
Schnaar, G. | Brusseau, M. L.
A series of miscible-displacement experiments was conducted to examine the impact of experiment conditions (detection limit, input pulse size, input concentration, pore-water velocity, contact time) on the performance of a mathematical solute transport model incorporating nonlinear, rate-limited sorption/desorption described by a continuous distribution reaction function. Effluent solute concentrations were monitored over a range of approximately seven orders of magnitude, allowing characterization of asymptotic tailing phenomenon. The model successfully simulated the extensive elution tailing observed for the measured data. Values for the mean desorption rate coefficient (ln k₂) and the variance of ln k₂were obtained through calibration of the model to measured data. Similar parameter values were obtained for experiments with different input pulse size, input concentration, pore-water velocity, and contact time. This suggests that the model provided a robust representation of sorption–desorption for this system tested. The impact of analytical detection limit was examined by calibrating the model to subsets of the breakthrough curves wherein the extent of the elution tail was artificially reduced to mimic a poorer detection limit. The parameters varied as a function of the extent of elution tail used for the calibrations, indicating the importance of measuring as full an extent of the tail as possible.
Afficher plus [+] Moins [-]Seed Priming of Trifolium repens L. Improved Germination and Early Seedling Growth on Heavy Metal-Contaminated Soil
2014
Galhaut, Laurence | de Lespinay, Alexis | Walker, David J. | Bernal Rúiz, María del Pilar | Correal, Enrique | Lutts, Stanley
Seed priming effects on Trifolium repens were analysed both in Petri dishes and in two soils (one unpolluted soil and a soil polluted with Cd and Zn). Priming treatments were performed with gibberellic acid 0.1 mM at 22 °C during 12 h or with polyethylene glycol (−6.7 MPa) at 10 °C during 72 h. Both priming treatments increased the germination speed and the final germination percentages in the presence of 100 μM CdCl₂or 1 mM ZnSO₄. Flow cytometry analysis demonstrated that the positive effect of priming was not related with any advancement of the cell cycle in embryos. Seed imbibition occurred faster for primed seeds than for control seeds. X-ray and electronic microscopy analysis suggested that circular depressions on the seed coat, in addition to tissue detachments inside the seed, could be linked to the higher rate of imbibition. Priming treatments had no significant impact on the behaviour of seedlings cultivated on non-polluted soil while they improved seedling emergence and growth on polluted soil. The two priming treatments reduced Zn accumulation. Priming with gibberellic acid increased Cd accumulation by young seedlings while priming with polyethylene glycol reduced it. Priming improved the light phase of photosynthesis and strengthened the antioxidant system of stressed seedlings. Optimal priming treatment may thus be recommended as efficient tools to facilitate revegetation of former mining area.
Afficher plus [+] Moins [-]Modeling the Effect of pH and Salinity on Biogeochemical Reactions and Metal Behavior in Sediment
2014
Hong, Yongseok | Reible, Danny D.
A mathematical model is developed to investigate the effect of pH and salinity fluctuation on biogeochemical reactions and metals' behavior in sediments. The model includes one-dimensional vertical advective and diffusive transport of species, serial reductions of electron acceptors, and precipitation/dissolution of species, acid–base chemistry, and metal sorption to sediments. The model was tested using data obtained from laboratory microcosm experiments which exposed metal (Cd, Zn) contaminated sediment to alternating fresh and salty overlying water. The model successfully reproduces the contrasting metal's release behavior and the vertical profiles of pH, Cl⁻, SO₄²⁻, Mn and Fe in porewater and the acid volatile sulfides (AVS) and simultaneously extracted metals (SEM) in sediments. The model showed that FeOOH₍ₛ₎was the dominant sorption phase controlling the solubility of the metals at the surficial sediments while AVS controlled the solubility of the metals in anoxic sediments. The model also showed that the release of the metals to overlying water was controlled by the oxidation of metal sulfides in a very thin layer of oxic sediments (2–3 mm). The proposed model can be useful in managing metal contaminated sediments where pH and salinity are fluctuating by assessing the underlying biogeochemical processes and metals' behavior.
Afficher plus [+] Moins [-]A Novel CO₂ Capture Process from Flue Gas with Recycling of Graphite Using Sodium—Conceptualization of the Process and Fundamental Process Description
2014
Basu, Aninda | De, Sudipta
Anthropogenic CO₂ emission is identified as the major cause of climate change. The use of fossil fuels has to be accommodated, possibly with a CO₂ capture process. Sequestration of captured CO₂ at high pressure is proposed as a feasible option for future mitigation of climate change, though using fossil fuels. However, this needs significant energy input and carries the potential threat of a possible future catastrophe. Capture of CO₂ with possible recycling is a long-term sustainable option. In this paper, a process involving a chain of reactions using solid sodium to capture both CO₂ and SO₂ from a flue gas is described. A significantly detailed description of both chemical reactions and physical processes is discussed. Recycling of captured CO₂ and SO₂ in the form of solid graphite and elemental sulphur (as the by-products) is the special feature of this process. However, critical selection of intermediate process liquids and equipment in this process needs further study for real-life implementation of this scheme.
Afficher plus [+] Moins [-]Metal(loid) Attenuation Processes in an Extremely Acidic River: The Rio Tinto (SW Spain)
2014
Ruiz Cánovas, Carlos | Olías, Manuel | Nieto, Jose Miguel
This study deals with the hydrogeochemical changes and metal(loid) attenuation processes along the extremely acidic Rio Tinto (SW Spain). The geochemistry of Tinto headwaters is determined by the variability of mining discharges due to different geological, geochemical and hydrological controls. Downstream of the mining area, a decrease in most dissolved element concentrations is recorded. However, not all elements decreased its concentration to the same extent, and even some did not decrease (e.g., Ba and Pb). A group of elements formed by Al, Cd, Co, Cr, Cu, Li, Mg, Mn, Ni and Zn behaved quasi-conservatively; mainly affected by dilution, except at the lower part of the catchment where seem to be affected by sorption/coprecipitation (e.g., Cd, Cu, and Zn) or mineral dissolution processes (e.g., Al, Mg). Iron and As exhibited a non-conservative behaviour due to ochre precipitation and sorption processes, respectively. A group of elements formed by Ca, Na, Sr and Li did not behave conservatively; waters were enriched in these elements by dissolutive reactions of carbonates and aluminosilicates from bedrocks. The behaviour of Pb in the Rio Tinto is complex; values fluctuate along the river course and its solubility may be related to the nature of Fe precipitates.
Afficher plus [+] Moins [-]Evaluating the Effects of Silent Discharge Plasma on Remediation of Acid Scarlet GR-Contaminated Soil
2014
Lu, Na | Lou, Jing | Wang, Cui Hua | Li, Jie | Wu, Yan
The remediation of dye-contaminated soil using silent discharge plasma in dielectric barrier discharge (DBD) reactor was reported in this study. Acid scarlet GR was selected as the representative of azo dye pollutants. Effects of applied voltage, discharge frequency, and gas flow rate on Acid scarlet GR treatment effect which were characterized by degradation efficiency and the change of chemical oxygen demand (COD) during the degradation were investigated. The decolorization rate of Acid scarlet GR in the soil increased with the applied voltage and discharge frequency, and the optimal gas flow rate was obtained at 1.0 L min⁻¹. The energy efficiency was clearly enhanced by way of increasing the amount of contaminated soil in the DBD reactor finitely. The degradation efficiency of Acid scarlet GR and the removal of COD value were achieved 93 % and 74 % after 25-min discharge treatment, respectively. The results indicated that the DBD remediation system was able to degrade Acid scarlet GR in the soil quickly and efficiently. This study is expected to provide a possible pathway of Acid scarlet GR degradation in soil.
Afficher plus [+] Moins [-]Nanoscale Zero-Valent Iron Supported on Biochar: Characterization and Reactivity for Degradation of Acid Orange 7 from Aqueous Solution
2014
Quan, Guixiang | Sun, Wenji | Yan, Jinlong | Lan, Yeqing
The nanoscale zero-valent iron supported on biochar (B-nZVI) was prepared by liquid-phase reduction method and used for the removal of acid orange 7 (AO₇). The structure of composited B-nZVI was characterized by transmission electron microscopy, scanning electron microscopy, X-ray diffraction analysis, X-ray photoelectron spectroscopy, and Brunauer-Emmett-Teller surface area analysis. nZVI was well dispersed on the surface of biochar with a specific surface area 52.21 m²/g, and no obvious aggregation was observed. Batch experiments demonstrated that the degradation of AO₇(20 mg/L) by B-nZVI (2 g/L) at initial pH 2 reached 98.3 % within 10 min. There was a good linearity (r² = 0.99) between kₒbₛand B-nZVI dosage. The reductive cleavage of the azo group in AO₇to amino group may be the dominant stage. This study demonstrated that B-nZVI has the potential to be a promising material for the removal of azo dyes.
Afficher plus [+] Moins [-]Behavior and mechanism of arsenate adsorption on activated natural siderite: evidences from FTIR and XANES analysis
2014
Zhao, Kai | Guo, Huaming
Activated natural siderite (ANS) was used to investigate its characteristics and mechanisms of As(V) adsorption from aqueous solution. Batch tests were carried out to determine effects of contact time, initial As(V) concentration, temperature, pH, background electrolyte, and coexisting anions on As(V) adsorption. Arsenic(V) adsorption on ANS well-fitted pseudo-second-order kinetics. ANS showed a high-adsorption capacity of 2.19 mg/g estimated from Langmuir isotherm at 25 °C. Thermodynamic studies indicated that As(V) adsorption on ANS was spontaneous, favorable, and endothermic. ANS adsorbed As(V) efficiently in a relatively wide pH range between 2.0 and 10.0, although the removal efficiency was slightly higher in acidic conditions than that in basic conditions. Effects of background electrolyte and coexisting anions were not significant within the concentration ranges observed in high As groundwater. Results of XRD and Fe K-edge XANES analysis suggested ANS acted as an Fe(II)/(III) hybrid system, which was quite effective in adsorbing As from aqueous solution. There was no As redox transformation during adsorption, although Fe(II) oxidation occurred in the system. Two infrared bands at 787 and 872 cm⁻¹after As(V) adsorption suggested that As(V) should be predominantly adsorbed on ANS via inner-sphere bidendate binuclear surface complexes.
Afficher plus [+] Moins [-]