Affiner votre recherche
Résultats 1361-1370 de 3,243
Removal of Boron from Aqueous Solution by 2,3-Dihydroxybenzaldehyde Modified Silica Gel
2015
Kara, Derya
2,3-Dihydroxybenzaldehyde modified silica gel (SGDHB) was prepared and then used for the removal of boron. Adsorption of boron on the SGDHB was examined with respect to the equilibrium adsorption, kinetics and as a function of pH. Boron is strongly retained on the SGDHB between pH 7 and pH 9. The results indicated that the adsorption equilibrium was well described by the Langmuir equation. The SGDHB exhibited an excellent sorption capacity with 3.812 mmol B/g SGDHB under experimental conditions. The material shows reasonably rapid sorption ability, with boron in 25 mL of 0.01 M H₃BO₃ solution being removed almost completely within 30 min of contact time with 0.12 g of the modified silica gel. The SGDHB was demonstrated to be an efficient sorbent for the removal of boron.
Afficher plus [+] Moins [-]Analyzing Current and Expected Air Quality and Pollutant Emissions Across Israel
2015
Lavee, D. | Moshe, A. | Menachem, O. | Hubner, V. | Tenanzap, K.
The aim of this paper is to analyze current and expected air quality in Israel and to identify the main responsible sources. To this end, the current (2010) air quality regarding five main air pollutants, PM₁₀, PM₂.₅, NO₂, SO₂, and O₃, was analyzed and the pollutant emission inventories were determined. Next, the expected emission inventories for the target years (2015 and 2020) were estimated. Based on these results, dispersion models (AERMOD, CHIMERE, FARM, and TREFIC) were used to forecast the expected air quality for the target years. The findings indicate that current policy measures are not sufficient and additional policy measures are required, particularly in the transport, industry, energy, and households sectors.
Afficher plus [+] Moins [-]Manganese Sand Ore Is an Economical and Effective Catalyst for Ozonation of Organic Contaminants in Petrochemical Wastewater
2015
Chen, Chunmao | Yoza, Brandon A. | Chen, Hongshuo | Li, Qing X. | Guo, Shaohui
Catalytic ozonation process (COP) is a promising advanced oxidation process for petrochemical wastewater (PCW) treatment. However, the lack of economical and effective catalysts limits its application. Manganese sand ore (MSO) was utilized as a heterogeneous catalyst for ozonation of organic contaminants in PCW in this study. The calcined MSO-assisted COP (cMSO-COP) of aniline exhibited greater degradation than natural MSO-assisted COP or single ozonation process (SOP). The cMSO significantly promoted hydroxyl radical-mediated oxidation, decreased the ozonation activation energy by about 20 %, and doubled the reaction rates in comparison with SOP. The cMSO-COP increased the chemical oxygen demand (COD) removal of PCW twofold relative to SOP. The number of polar organic contaminants decreased by 50 % after cMSO-COP treatment. This study demonstrated the potential use of cMSO for efficient ozonation of petrochemical-derived contaminants at low cost.
Afficher plus [+] Moins [-]The Effect of Calcium Peroxide on the Phenol Oxidase and Acid Phosphatase Activity and Removal of Fluoranthene from Soil
2015
Małachowska-Jutsz, Anna | Niesler, Magdalena
A study has been conducted to enhance fluoranthene degradation by combining biodegradation with hydrogen peroxide oxidation, as a chemical oxidant calcium peroxide has been used. The impacts of addition of calcium peroxide on microbial activity (phenol oxidase and acid phosphatase) as well as fluoranthene removal efficiency were investigated. It was observed that in the presence of calcium peroxide, the removal efficiency of fluoranthene on day 30 of the experiment was threefold higher as compared to a reference sample. It was found that the activity of phenol oxidase was stimulated on days 1, 7, and 14, by the presence of fluoranthene, whereas stimulation of the acid phosphatase activity in the samples of soil contaminated by fluoranthene was observed only after 14 days of the experiment. This may indicate that the induction period for this enzyme is longer compared with the induction period for phenol oxidase. The inhibition of the activity of both enzymes was observed in the presence of calcium peroxide.
Afficher plus [+] Moins [-]Salinization and Yield Potential of a Salt-Laden Californian Soil: an In Situ Geophysical Analysis
2015
Cassel, Florence | Goorahoo, Dave | Sharmasarkar, Shankar
Salinization is a global problem, including in California, USA, where over two million hectares of irrigated lands have deteriorated due to salt loading. Because of freshwater shortage, some farmlands are also irrigated with agricultural drainage water, which further exacerbates the salinization process. With the objectives of rapidly quantifying spatial and temporal progression of salinization and identifying yield potential for a high-value crop, we conducted 2-year salinity surveys in a salt-affected farm in California by utilizing a dual dipole electromagnetic induction technology (EM38). The EM-predicted conductivity (ECₑ) was consistent with the ground-truth soil data ECₛ and increased with depth. About 50 and 25 % of the ECₑ data in moderately (A) and severely (B) affected salinity zones surpassed 500 and 1000 mS m⁻¹ levels, respectively. In the northern part of B, up to 70 % samples remained within 500–1000 mS m⁻¹ range. There was eastbound salt loading in the northern and southern parts of A. Rhizosphere salinity showed spatial dependence up to 500 m lateral distance. The shifts in salinity could be due to dispersion and leaching of solutes. High crop yield reduction was estimated in the southwestern and northeastern parts of the field that had typically elevated ECₑ. Around 43 % surveyed area was conducive to attaining 80 % of full yield potential, and the central part of the field was determined to be most suitable for crop growth. Coupling of EM results with production values indicated that under elevated saline condition, it would be feasible to grow a high-value tomato crop.
Afficher plus [+] Moins [-]Constructed Wetland for Treating Effluent from Subtropical Aquaculture Farm
2015
Travaini-Lima, Fernanda | da Veiga, Márcia Andreia Mesquita Silva | Sipaúba-Tavares, Lúcia Helena
A free water surface flow constructed wetland (CW) was designed to evaluate the capacity of this biological treatment system, which receives wastewater from aquaculture and upflow anaerobic sludge blanket (UASB) reactors, to retain heavy metal. The purpose of this study was to determine the role of the sediment and the macrophytes Cyperus giganteus, Typha domingensis, Eichhornia crassipes, and Pontederia cordata in accumulating Al, Cd, Cr, Cu, Fe, Ni, Mn, Pb, and Zn, during the dry (winter) and rainy (summer) seasons. In general, the concentrations and mass loading of heavy metals in the outlet water were lower than in the inlet water. The highest removal efficiency rates of water (mainly mass removal) occurred in the dry season. In the rainy season, the probable low oxygen level in the upper layer of sediment resulted in a release of reduced metals into the water because of organic matter mineralization and an increase in depth. This, coupled with an increase in the hydraulic loading rate (HLR), affected the efficiency removal in this season. The metals were especially immobilized as a result of the sedimentation process and could be removed weakly via macrophyte uptake, with the exception of Mn. In addition to the sediment, which is the main compartment for heavy metal retention in the CW system, the macrophytes have the advantage of being harvested. Therefore, E. crassipes and T. domingensis, which are good metal accumulators, can be recommended for the removal of heavy metals from agricultural wastewaters.
Afficher plus [+] Moins [-]Addition of Adsorbents to Nanofiltration Membrane to Obtain Complete Pesticide Removal
2015
Madsen, Henrik T. | Ammi-said, Abdallah | Bruggen, Bart van der | Søgaard, Erik G.
Removal of micropollutants from water with NF/RO membranes has received much attention in recent years. However, because of especially diffusion through the polyamide layer, NF/RO membranes never achieve complete removal, which may be a problem given the possibility of micropollutants causing adverse effects in even very low concentrations. In this paper, we have investigated a strategy of implementing adsorbents into the support layer of a NF membrane to increase the overall removal of three selected pesticides by combining membrane rejection and adsorption into one unit operation. The objective of the study was to act as proof of concept for the scheme, as well as to gain insights into how adsorbents may be inserted into the membrane support, and how they affect the membrane performance. The results showed that the addition of the adsorbents to the membrane increased the adsorption capacity of the membrane, and that the adsorbents could be embedded in the membrane without affecting the flux and rejection behaviour. This however depended very much on the specific manufacturing method. Furthermore, the adsorption capacity was found to vary significantly for the three pesticides, indicating a need for adsorbents designed to specifically target a given micropollutant. Overall, the concept of a complete removal membrane is realisable, but several challenges remain to be solved.
Afficher plus [+] Moins [-]Accumulation of Major and Trace Elements in Spider Webs
2015
Rybak, Justyna
The spider webs of Malthonica ferruginea (Panzer, 1804) from the Agelenidae family were used for the evaluation of heavy metal contamination, and major and trace elements presence in the air of Wrocław, Poland. The concentrations of 16 elements were determined (Mg, Al, K, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, W, Pt, and Pb). Samples of webs were collected from six different locations with low, moderate, and high pollution level (urban of low and high traffic, residential, and postindustrial sites) after 60 days of exposure. Samples collected from high traffic sites and postindustrial site were found to have high contents of elements than residential sites and one of low traffic urban site. The principle component analysis (PCA) and correlation analysis provide important information about the potential sources of the elements in spider webs. Two contamination sources were identified: road traffic emissions and industrial. This was a first-time ever attempt to use webs for biomonitoring of small-scale distribution of airborne major and trace elements in the city of Wrocław.
Afficher plus [+] Moins [-]Deployment of Microbial Biosensors to Assess the Performance of Ameliorants in Metal-Contaminated Soils
2015
Maletić, Snežana P. | Watson, Malcolm A. | Dehlawi, Saad | Diplock, Elizabeth E. | Mardlin, David | Paton, Graeme I.
The remediation of metal-impacted soils requires either the enhanced mobility (and capture) of the target analytes or their effective complexation/immobilisation. In this study, a range of ameliorants (activated carbon, bonemeal, bentonite and CaSx (calcium polysulphide)) were compared to assess their effectiveness in immobilising metals in soils. In addition to chemical analysis (pH and trace element analysis), microbial biosensors were used to assess changes in the water-soluble biotoxicity of metals as a consequence of ameliorant dosing. Management of soil ameliorants requires an enhancement of K d (solid/solution partition coefficient) if soil leachate is to meet predefined environmental quality standards. Of the ameliorants tested, CaSx was the most effective per unit added for both laboratory-amended and historically contaminated soils, regardless of the metal tested. At the ameliorant concentrations used to effectively immobilise the metals, the biosensor performance was not impaired. Microbial biosensors offered a rapid and relevant screening tool to validate the reduced toxicity associated with the ameliorant dosing and could be calibrated to complement chemical analysis. While laboratory-amended soils were a logical way to evaluate the performance of the ameliorants, they were generally associated with K d values an order of magnitude lower than those of historically contaminated soils.
Afficher plus [+] Moins [-]Natural Occurrence of Arsenic in Groundwater from Lesvos Island, Greece
2015
Zkeri, Eirini | Aloupi, Maria | Gaganis, Petros
A geochemical analysis and modelling was carried out to investigate the As occurrence and release in groundwater from two different geological environments on Lesvos Island: (i) the volcanic area of Mandamados (ignimbrite of rhyolithic to rhyodacitic composition) and (ii) the metamorphic area of Tarti (schists and marbles) that comprises the geologic basement under ignimbrite. Seven sampling campaigns were conducted between October 2010 and October 2011, including 65 groundwater samples from 11 wells and springs. Chemical analyses showed As concentrations exceeding the 10-μg/L national drinking water limit in 46 % of the samples from Mandamados. Groundwater composition in Mandamados evolved from Ca-HCO₃ type, to mixed type and finally to Na-Cl type along the groundwater flow direction, indicating the contribution of ion exchange in groundwater chemical composition, while Ca-HCO₃ type waters were observed in the Tarti area. Arsenic speciation analysis showed that As(V) was the main species in all samples, indicating that As was released under oxidizing conditions. Statistical analysis suggested silicate weathering as the prime mechanism of As release in groundwater in both cases, while, in the Tarti area, carbonate dissolution may represent a secondary mechanism which could be related to the observed relatively low As concentrations in the region. In both areas, pH-related desorption of As, primarily from Fe mineral phases, was found to be the most important factor controlling the mobilisation of As, while the contribution of the redox control to As release in groundwater was generally found to be less significant.
Afficher plus [+] Moins [-]