Affiner votre recherche
Résultats 1361-1370 de 4,938
Influence of biomass burning on local air pollution in mainland Southeast Asia from 2001 to 2016 Texte intégral
2019
Yin, Shuai | Wang, Xiufeng | Zhang, Xirui | Guo, Meng | Miura, Moe | Xiao, Yi
In this study, various remote sensing data, modeling data and emission inventories were integrated to analyze the tempo-spatial distribution of biomass burning in mainland Southeast Asia and its effects on the local ambient air quality from 2001 to 2016. Land cover changes have been considered in dividing the biomass burning into four types: forest fires, shrubland fires, crop residue burning and other fires. The results show that the monthly average number of fire spots peaked at 34,512 in March and that the monthly variation followed a seasonal pattern, which was closely related to precipitation and farming activities. The four types of biomass burning fires presented different tempo-spatial distributions. Moreover, the monthly Aerosol Optical Depth (AOD), concentration of particulate matter with a diameter less than 2.5 μm (PM₂.₅) and carbon monoxide (CO) total column also peaked in March with values of 0.62, 45 μg/m³ and 3.25 × 10¹⁸ molecules/cm², respectively. There are significant correlations between the monthly means of AOD (r = 0.74, P < 0.001), PM₂.₅ concentration (r = 0.88, P < 0.001), and CO total column (r = 0.82, P < 0.001) and the number of fire spots in the fire season. We used Positive Matrix Factorization (PMF) model to resolve the sources of PM₂.₅ into 3 factors. The result indicated that the largest contribution (48%) to annual average concentration of PM₂.₅ was from Factor 1 (dominated by biomass burning), followed by 27% from Factor 3 (dominated by anthropogenic emission), and 25% from Factor 2 (long-range transport/local nature source). The annually anthropogenic emission of CO and PM₂.₅ from 2001 to 2012 and the monthly emission from the Emission Database for Global Atmosphere Research (EDGAR) were consistent with PMF analysis and further prove that biomass burning is the dominant cause of the variation in the local air quality in mainland Southeast Asia.
Afficher plus [+] Moins [-]Distribution, partitioning, and seasonal variation of lipophilic marine algal toxins in aquatic environments of a typical semi-closed mariculture bay Texte intégral
2019
Wu, Danni | Chen, Junhui | He, Xiuping | Wang, Jiuming | Wang, Zhiwei | Li, Xiaotong | Wang, Baodong
Lipophilic marine algal toxins (LMATs) pose a potential threat to the health of marine shellfish consumers and marine breeding industries. In this study, LMATs in dissolved phases (DP) and particulate phases (PP) in the seawater of Jiaozhou Bay were accurately determined over four seasons to understand their composition, level, phase partitioning, spatiotemporal variation, and potential sources in aquatic environments of a typical semi-closed mariculture bay. Various LMATs, such as okadaic acid (OA), dinophysistoxin-1 (DTX1), dinophysistoxin-2 (DTX2), gymnodimine (GYM), 13-desmethyl spirolide C (SPX1), pectenotoxin-2 (PTX2), pectenotoxin-2 seco acid (PTX2 SA), and pectenotoxin-11 (PTX11), were detected in DP and PP; of these, OA and PTX2 were the dominant LMATs in DP and PP, respectively. The average proportion of ΣLMATs in DP (97.5%) was significantly higher than that in PP (2.5%), which indicates that LMATs are predominantly partitioned into DP. The total concentrations of LMATs in DP ranged from 4.16 ng/L to 23.19 ng/L (mean, 13.35 ng/L) over four seasons. The highest levels of LMATs in DP and PP were found in summer (mean, 16.71 ng/L) and spring, respectively, while the maximum variety of LMATs was found in autumn. This result suggests that seasonal changes could influence the composition, concentration, and phase partitioning of LMATs in aquatic environments of a coastal semi-closed mariculture bay. ΣLMAT concentrations were higher in the western region than in the eastern region of the bay, where shellfish may have a greater risk of exposure. Dinophysis acuminata, Dinophysis fortii, and Prorocentrum minimum were the potential sources of LMATs in the aquaculture seawater. Overall, various LMATs occurred in the semi-closed mariculture bay, and the persistence and bioavailability of these toxins in aquaculture seawater should be determined in future research.
Afficher plus [+] Moins [-]Metals in surface specific urban runoff in Beijing Texte intégral
2019
Shajib, Md Tariqul Islam | Hansen, Hans Christian Bruun | Liang, Tao | Holm, Peter E.
Metals are among the most toxic pollutants in urban stormwater. To investigate the concentration of dissolved and particulate fractions, the temporal variation during rain events, the effect of wash-off surface, and to assess the pollution status of metals in urban runoff, a total of 155 samples were collected mainly from trafficked areas, roofs and parking lots in Beijing from March to November 2015. Most of the metals were found mainly in the particulate fraction (68–96%) from trafficked surfaces, while for roof runoff Cd, Fe, Mn and Zn were found more equally in dissolved and particulate fractions. Metal concentrations were higher during start of a rain event than later (p < 0.05), and also were higher the longer the period of antecedent dry days. The mean concentration of all metals in trafficked areas exceeded both the Chinese standard Level III (swimming and fishery waters) and the European standards (surface water). Mean concentrations of Cd, Mn, Zn, Al, Fe, Pb and Ni from trafficked areas were 2–10 times higher due to higher traffic intensity and substantial atmospheric deposition, while Sb was 20 times higher than in any other reported data for urban runoff. Cluster analysis (CA) and principal component analysis (PCA) together with Pearson's correlation co-efficient suggested that Cd, Cr, Cu, Mn, Ni, Pb, and Zn mainly originates from vehicular activities, while Mn and Zn in roof runoff is due to atmospheric deposition. The geo-accumulation and pollution indices show that runoff from trafficked areas are moderately to heavily polluted by most metals, except Cu and Zn. Thus, Beijing urban runoff presents an environmental risk towards lakes, bathing water and drinking water. The results can be used as basis for development of stormwater and pollution control strategies.
Afficher plus [+] Moins [-]Evaluation of random forest regression and multiple linear regression for predicting indoor fine particulate matter concentrations in a highly polluted city Texte intégral
2019
Yuchi, Weiran | Gombojav, Enkhjargal | Boldbaatar, Buyantushig | Galsuren, Jargalsaikhan | Enkhmaa, Sarangerel | Beejin, Bolor | Naidan, Gerel | Ochir, Chimedsuren | Legtseg, Bayarkhuu | Byambaa, Tsogtbaatar | Barn, Prabjit | Henderson, Sarah B. | Janes, Craig R. | Lanphear, Bruce P. | McCandless, Lawrence C. | Takaro, Tim K. | Venners, Scott A. | Webster, Glenys M. | Allen, Ryan W.
Indoor and outdoor fine particulate matter (PM2.5) are both leading risk factors for death and disease, but making indoor measurements is often infeasible for large study populations.We developed models to predict indoor PM2.5 concentrations for pregnant women who were part of a randomized controlled trial of portable air cleaners in Ulaanbaatar, Mongolia. We used multiple linear regression (MLR) and random forest regression (RFR) to model indoor PM2.5 concentrations with 447 independent 7-day PM2.5 measurements and 87 potential predictor variables obtained from outdoor monitoring data, questionnaires, home assessments, and geographic data sets. We also developed blended models that combined the MLR and RFR approaches. All models were evaluated in a 10-fold cross-validation.The predictors in the MLR model were season, outdoor PM2.5 concentration, the number of air cleaners deployed, and the density of gers (traditional felt-lined yurts) surrounding the apartments. MLR and RFR had similar performance in cross-validation (R2 = 50.2%, R2 = 48.9% respectively). The blended MLR model that included RFR predictions had the best performance (cross validation R2 = 81.5%). Intervention status alone explained only 6.0% of the variation in indoor PM2.5 concentrations.We predicted a moderate amount of variation in indoor PM2.5 concentrations using easily obtained predictor variables and the models explained substantially more variation than intervention status alone. While RFR shows promise for modelling indoor concentrations, our results highlight the importance of out-of-sample validation when evaluating model performance. We also demonstrate the improved performance of blended MLR/RFR models in predicting indoor air pollution.
Afficher plus [+] Moins [-]Application of sodium titanate nanofibers as constructed wetland fillers for efficient removal of heavy metal ions from wastewater Texte intégral
2019
Zhao, Min | Wang, Sen | Wang, Hongsheng | Qin, Peirui | Yang, Dongjiang | Sun, Yuanyuan | Kong, Fanlong
Constructed wetlands are an environmentally friendly and economically efficient sewage treatment technology, with fillers playing an important role in treatment processes. However, traditional wetland fillers (e.g. zeolite) are known to be imperfect because of their low adsorption capacity. In this paper, the adsorbent sodium titanate nano fillers (T3-F) was synthesized as an alternative to traditional filler with sodium titanate nanofibers (T3) as the raw material, epoxy adhesive as the adhesive agent and NH₄HCO₃ as the pore-making agent. The properties of T3-F were characterized by powder X-ray diffraction (XRD), scanning electron microscope-energy dispersive X-ray spectroscopy (SEM-EDX), porosity. The effect of different parameters such as pH, co-existing ions, contact time, initial metal ion concentrations and temperature was investigated for heavy metal adsorption. The results showed that the adsorption of heavy metal by T3-F followed the pseudo-second-order kinetic and Langmuir isotherm models. The maximum adsorption capacities for Cu²⁺, Pb²⁺, Zn²⁺, Cd²⁺ were about 1.5–1.98 mmol/g, which were 4–5 times that of zeolite, the traditional commonly used filler. Moreover, T3-F could entrap toxic ions irreversibly and maintain structural stability in the adsorption process, which solved the issue of secondary pollution. In the presence of competing ions, the adsorption efficiency for Pb²⁺ was not reduced significantly. Adsorption was strongest at high pH. From the results and characterization, an adsorption mechanism was suggested. This study lays a foundation for the practical application of T3-F as a constructed wetland filler in the future.
Afficher plus [+] Moins [-]Occurrence and distribution of phthalate esters in freshwater aquaculture fish ponds in Pearl River Delta, China Texte intégral
2019
Cheng, Zhang | Liu, Jun-Bo | Gao, Meng | Shi, Guang-Ze | Fu, Xiao-Jiao | Cai, Peng | Lv, Yan-Feng | Guo, Zhong-Bao | Shan, Chun-Qiao | Yang, Zhan-Biao | Xu, Xiao-Xun | Xian, Jun-Ren | Yang, Yuan-Xiang | Li, Kai-Bin | Nie, Xiang-Ping
The concentrations, congener profiles and spatial distribution of 13 phthalate esters (PAEs) in the freshwater fish ponds in the Pearl River Delta (PRD) region were investigated in water and sediment samples collect from 22 sites during Jul. 2016–Sept. 2017. The di-2-ethylhexyl phthalate (DEHP) was the predominant compounds in both water and sediment samples, accounting for 70.1% and 66.1% of ∑PAEs, respectively. The DEHP concentrations in the water samples collected from the sites of Zhongshan (35.7 μg/L), Jingmen (17.3 μg/L) and Nanhai (14.2 μg/L) were higher than that collected from other sampling sites (p <0.05), and exceed the Chinese environmental quality standards for surface water (DEHP, 8.00 μg/L). The concentrations of ΣPAEs (mean and median were 11.8 mg/kg dw and 7.95 mg/kg dw) in sediment was higher than that in sediment of river and estuary in the PRD region (p <0.05). The median concentrations of DEHP and di-n-butyl phthalate (DBP) exceeded recommend environmental risk limit (ERL) that posed a potential risk to the aquaculture fish pond environment in the PRD.
Afficher plus [+] Moins [-]PM2.5-induced extensive DNA methylation changes in the heart of zebrafish embryos and the protective effect of folic acid Texte intégral
2019
Jiang, Yan | Li, Jianxiang | Ren, Fei | Ji, Cheng | Aniagu, Stanley | Chen, Tao
We previously found that folic acid (FA) attenuated cardiac defects in zebrafish embryos exposed to extractable organic matter (EOM) from PM2.5, but the underlining mechanisms remain to be elucidated. Since DNA methylation is crucial to cardiac development, we hypothesized that EOM-induced aberrant DNA methylation changes could be diminished by FA supplementation. In this study, zebrafish embryos were exposed to EOM in the absence or presence of FA. Genomic-wide DNA methylation analysis identified both DNA hypo- and hyper-methylation changes in CCGG sites in zebrafish embryos exposed to EOM, which were attenuated by FA supplementation. We identified a total of 316 genes with extensive DNA methylation changes in EOM samples but little or no DNA methylation changes in EOM plus FA samples. The genes were involved in critical cellular processes and signaling pathways important for embryo development. In addition, the EOM-decreased SAM/SAH ratio was counteracted by FA supplementation. Furthermore, FA attenuated the EOM-induced changes in the expression of genes involved in the regulation of DNA methylation and in folate biosynthesis. In conclusion, our data suggest that FA supplementation protected zebrafish embryos from the cardiac developmental toxicity of PM2.5 by alleviating EOM-induced DNA methylation changes.
Afficher plus [+] Moins [-]Baseline investigation on plasticizers, bisphenol A, polycyclic aromatic hydrocarbons and heavy metals in the surface soil of the informal electronic waste recycling workshops and nearby open dumpsites in Indian metropolitan cities Texte intégral
2019
Chakraborty, Paromita | Sampath, Srimurali | Mukhopadhyay, Moitraiyee | Sakthivel, S. | Bharat, Girija K. | Nizzetto, Luca
Electronic waste (e-waste) has emerged as a global environmental problem because of its massive production volume and un-structured management policy. Since the rate of e-waste accumulation is startling and the combinatorial effects of toxicants are complex, we have investigated six phthalic acid esters (PAEs), bis (2-ethylhexyl) adipate (DEHA)), bisphenol A (BPA), sixteen polycyclic aromatic hydrocarbons (PAHs) and eight heavy metals (HMs) in the surface soil of e-waste recycling workshops and nearby open dumpsites in four metropolitan cities of India viz., New Delhi (north), Kolkata (east), Mumbai (west) and Chennai (south). Average concentration of ∑₁₆PAHs (1259 ng/g), ∑₆PAEs (396 ng/g), BPA (140 ng/g) and ∑₈HM (1288 mg/kg) in the informal e-waste recycling sites were higher than ∑₁₆PAHs (1029 ng/g), ∑₆PAEs (93 ng/g), BPA (121 ng/g) and ∑₈HM (675 mg/kg) in dumpsites. Almost 50–90% of BPA, bis (2-ethylhexyl) phthalate (DEHP), ∑₇cₐᵣcPAHs and copper (Cu) were from e-waste sites predominantly from metal recovery sites (EWR). Extensive combustion of e-waste particularly in the EWR sites at New Moore market and Pudupet in Chennai and Wire Lane, Kurla of Mumbai can explain the segregation of diethyl phthalate (DEP), benzyl butyl phthalate (BBP) and carcinogenic PAHs in the first principal component (PC-1). Copper and lead along with highly abundant plasticizers like DEHP, dibutyl phthalate (DBP) and BPA were loaded in PC-2. Combined impact of burning the plastic cables in e-waste and acid leaching process especially at Mandoli in New Delhi might have driven this result. Loading of chrysene, DEHA and low molecular weight (LMW) PAHs mostly in dumpsite soil might have resulted from incomplete combustion of dumped e-waste. Copper was found to exhibit the highest pollution estimated by geo-accumulation index (Igeo). Maximum estimated carcinogenic risk for adults via dermal contact was due to copper, followed by chromium, lead and nickel.
Afficher plus [+] Moins [-]Differential lethal and sublethal effects in embryonic zebrafish exposed to different sizes of silver nanoparticles Texte intégral
2019
Liu, Xiaobo | Dumitrescu, Eduard | Kumar, Ajeet | Austin, Daniel | Goia, Dan | Wallace, Kenneth N. | Andreescu, Silvana
Various parameters can influence the toxic response to silver nanoparticles (Ag NPs), including the size and surface properties, as well as the exposure environment and the biological site of action. Herein, we assess the intestinal toxicity of three different sizes (10, 40, and 100 nm) of Ag NPs in embryonic zebrafish, and describe the relationship between the properties and behavior of Ag NPs in the exposure medium, and induction of lethal and sublethal effects. We find that the composition of the medium and the size contribute to differential NPs agglomeration, release of Ag ions, and subsequent effects during exposure. The exposure medium causes dramatic reduction in silver dissolution due to the presence of salts and divalent cations, which limits the lethal potential of silver ions. Lethality is observed primarily for embryos exposed to medium sized Ag NPs (40 nm), but not to the supernatant originated from particles, which suggests that the exposure to particulate silver is the main cause of mortality. On the other hand, the exposure to 10 nm and 100 nm NPs, as well as Ag ions, only causes sublethal developmental defects in skeletal muscles and intestine, and induces a nitric oxide imbalance.
Afficher plus [+] Moins [-]Molecular insights into ovary degeneration induced by environmental factors in female oriental river prawns Macrobrachium nipponense Texte intégral
2019
Fu, Chunpeng | Li, Fajun | Wang, Lifang | Li, Tingting
The oriental river prawn, Macrobrachium nipponense, is an important breeding species in China. The ovary development of this prawn is regulated by the genetic factors and external environmental factors and has obvious seasonal regularity. However, the molecular mechanism of regulating ovary degradation in M. nipponense remains unclear. To address this issue, we performed transcriptome sequencing and gene expression analyses of eyestalks, cerebral ganglia (CG) and thoracic ganglia (TG) of female M. nipponense between the full ovary stage and degenerate ovary stage. Differentially expressed genes enrichment analysis results identified several important pathways such as “phototransduction-fly,” “circadian rhythm-fly” and “steroid hormone biosynthesis secretion.” In the period of ovarian degeneration, the expressions of Tim, Per2 and red pigment concentration hormone (RPCH) were significantly decreased in the eyestalk, CG and TG. And expression of 7 genes in the steroid synthesis pathway, including steryl-sulfatase, cytochrome P450 family 1 subfamily A polypeptide 1, estradiol 17β-dehydrogenase 2, glucuronosyltransferase, 3-oxo-5-alpha-steroid 4-dehydrogenase 1, estradiol 17-dehydrogenase 1 and estrone sulfotransferase was significantly decreased in the CG. Food and light signals affect the expression of clock genes and thereby decrease the expression of RPCH and the estradiol synthesis-related genes in the nervous system, which may be the main cause of ovarian degeneration in M. nipponense. The results will contribute to a better understanding of the molecular mechanisms of ovarian development regulation in crustaceans.
Afficher plus [+] Moins [-]