Affiner votre recherche
Résultats 1361-1370 de 7,214
Recent advances in biological removal of nitroaromatics from wastewater
2022
Zhu, Cuicui | Huang, Haining | Chen, Yinguang
Various nitroaromatic compounds (NACs) released into the environment cause potential threats to humans and animals. Biological treatment is valued for cost-effectiveness, environmental friendliness, and availability when treating wastewater containing NACs. Considering the significance and wide use of NACs, this review focuses on recent advances in biological treatment systems for NACs removal from wastewater. Meanwhile, factors affecting biodegradation and methods to enhance removal efficiency of NACs are discussed. The selection of biological treatment system needs to consider NACs loading and cost, and its performance is affected by configuration and operation strategy. Generally, sequential anaerobic-aerobic biological treatment systems perform better in mineralizing NACs and removing co-pollutants. Future research on mechanism exploration of NACs biotransformation and performance optimization will facilitate the large-scale application of biological treatment systems.
Afficher plus [+] Moins [-]Lipid biomarkers and metal pollution in the Holocene record of Cartagena Bay (SE Spain): Coupled natural and human induced environmental history in Punic and Roman times
2022
Ortiz, José E. | Torres, Trinidad | Sánchez-Palencia, Yolanda | Ros, Milagros | Ramallo, Sebastián | López-Cilla, Ignacio | Galán, Luis A. | Manteca, Ignacio | Rodríguez Estrella, Tomás | Blázquez, Ana | Gómez-Borrego, Ángeles | Ruiz-Zapata, Blanca | Gil, María José
We reconstructed the palaeoenvironmental conditions of Cartagena Bay during the Holocene after a multidisciplinary study to identify natural variations and the anthropic processes of this coastal area. A total of 119 samples were recovered for amino acid racemization dating, 3 for radiocarbon dating (¹⁴C), and four sets of 80 samples for sedimentological and palaeontological determination, mineralogical content, biomarker and trace elements quantification. Two natural scenarios were identified from the variations of n-alkane indices and palaeobiological content. The first period (6650–5750 yr cal BP) was marked by the development of euhaline marine conditions with strong inputs from aquatic macrophytes and high biodiversity. After a hiatus, the area underwent a profound change, becoming a paucispecific brackish marsh environment with increasing inputs from land plants, with possible episodes of emersion with a greater presence from terrestrial gastropods (3600–300 cal yr BP). By combining trace element abundance and stanol distributions, our study also provides a novel approach to identify the predominant influence of anthropogenic factors in the last three millennia in the coastal record of Cartagena Bay. Findings confirmed that Pb mining and metallurgy began during the Bronze Age, with considerable inputs of this heavy metal into the atmosphere during Phoenician, Punic and particularly Roman times compared to the Middle Ages. Pollution by Cu and Zn was also observed during Punic and Roman times, and was first documented in the Middle Ages. In addition, faecal stanols, such as coprostanol, derived mainly from humans, and 24-ethylcoprostanol from herbivores were present, thereby indicating for the first time a continuous presence of human populations and significant pollution input since 3600 yr cal BP, this being greater in the late Bronze Age and Phoenician, Punic and Roman times than during Late Antiquity and the Middle Ages, when the city was in decline.
Afficher plus [+] Moins [-]Pyrolysis of hydrothermally dewatering sewage sludge: Highly efficient peroxydisulfate activation of derived biochar to degrade diclofenac
2022
Wang, Teng | Zhou, Yi | Xue, Yongjie | Sang, Tianmeng | Ren, Lu | Chen, Si | Liu, Jingxin | Mei, Meng | Li, Jinping
The resource utilization of sewage sludge can solve its disposal issue essentially. Meanwhile the removal of diclofenac (DCF) in wastewater is an emerging environmental problem. In this study, a novel strategy of sludge utilizing via hydrothermal - peroxydisulfate (PDS) dewatering coupled pyrolysis process was proposed. The obtained sludge-derived biochar (HSC) could be as candidate to activate PDS to degrade DCF. Results indicated that exceed 90% of DCF was eliminated within 30 min in HSC-PDS/DCF ternary system under the optimized condition (0.6 mmol/L PDS and 0.5 mg/L HSC, without temperature and pH pre-adjusting). The inner mechanism of HSC-PDS/DCF system was revealed as follows: (1) Major: CO in quinones and ketone structure in HSC accelerated the degradation of DCF via non-radical pathway (electron transfer and ¹O₂). (2) Minor: Graphitic N structure accelerated the electron transfer and O₂•⁻ originated from defective sites involved into the redox. Several by-products were identified and two tentative degradation pathways of DCF (eg. dechlorination and C–N cleavage) were proposed.
Afficher plus [+] Moins [-]Effect of micro-aerobic conditions based on semipermeable membrane-covered on greenhouse gas emissions and bacterial community during dairy manure storage at industrial scale
2022
Fang, Zhen | Zhou, Ling | Liu, Ya | Xiong, Jinpeng | Su, Ya | Lan, Zefeng | Han, Lujia | Huang, Guangqun
This study evaluated the greenhouse gas emissions of solid dairy manure storage with the micro-aerobic group (MA; oxygen concentration <5%) and control group (CK; oxygen concentration <1%), and explained the difference in greenhouse gas emissions by exploring bacterial community succession. The results showed that the MA remained the micro-aerobic conditions, which the maximum and average oxygen concentrations were 4.1% and 1.9%, respectively; while the average oxygen concentrations of the CK without intervention management was 0.5%. Compared with the CK, carbon dioxide and methane emissions in MA were reduced by 78.68% and 99.97%, respectively, and nitrous oxide emission was increased by almost three times with a small absolute loss, but total greenhouse gas emissions decreased by 91.23%. BugBase analysis showed that the relative abundance of aerobic bacteria in CK decreased to 0.73% on day 30, while that in MA increased to 6.56%. Genus MBA03 was significantly different between the two groups (p < 0.05) and was significantly positively correlated with carbon dioxide and methane emissions (p < 0.05). A structural equation model also revealed that the oxygen concentration and MBA03 of the MA had significant direct effects on methane emission rate (p < 0.001). The research results could provide theoretical basis and measures for directional regulation of greenhouse gas emission reduction during dairy manure storage.
Afficher plus [+] Moins [-]Perfluorooctane sulfonic acid (PFOS) inhibits vessel formation in a human 3D co-culture angiogenesis model (NCFs/HUVECs)
2022
Forsthuber, Martin | Widhalm, Raimund | Granitzer, Sebastian | Kaiser, Andreas Marius | Moshammer, Hanns | Hengstschläger, Markus | Dolznig, Helmut | Gundacker, Claudia
Perfluorooctane sulfonic acid (PFOS) is a ubiquitous environmental pollutant. In humans, PFOS exposure has been associated with a number of adverse health outcomes, including reduced birth weight. Whether PFOS is capable of affecting angiogenesis and thus possibly fetal development is unknown. Therefore, we investigated 1) the metabolic activity of PFOS-exposed endothelial cells (human umbilical vein endothelial cells, HUVECs), fibroblasts (normal colon fibroblasts, NCFs), and epithelial cells (human colorectal carcinoma cells, HCT116), 2) PFOS-specific inhibition of vascular endothelial growth factor receptor (VEGFR)2 stimulation in KDR/NFAT-RE HEK293 cells, and 3) the antiangiogenic potential of PFOS in a 3D in vitro angiogenesis model of HUVECs and NCFs. In terms of metabolic activity, endothelial cells (HUVECs) were much more sensitive to PFOS than fibroblasts (NCFs) or epithelial cells (HCT116). VEGFR2 signaling in KDR/NFAT-RE HEK293 cells decreased with increasing PFOS concentrations. In co-culture (angiogenesis assay), PFOS treatment resulted in a dose-dependent reduction in tip and branch formation, tip length (μm), and total structural area (μm²) with stable metabolic activity of HUVECs up to high concentrations. We conclude that PFOS possesses antiangiogenic properties. Inhibition of VEGFR2 signaling indicates a possible mechanism of action that can be linked to an existing Adverse Outcome Pathway (AOP43) containing the AO reduced birth weight. Further studies are needed to confirm PFOS-specific adverse effects on angiogenesis, placental perfusion, and fetal growth.
Afficher plus [+] Moins [-]Progress and challenges in sensing of mycotoxins using molecularly imprinted polymers
2022
Hua, Yongbiao | Ahmadi, Younes | Sonne, Christian | Kim, Ki Hyun
Mycotoxin is toxic secondary metabolite formed by certain filamentous fungi. This toxic compound can enter the food chain through contamination of food (e.g., by colonization of toxigenic fungi on food). In light of the growing concerns on the health hazards posed by mycotoxins, it is desirable to develop reliable analytical tools for their detection in food products in both sensitive and efficient manner. For this purpose, the potential utility of molecularly imprinted polymers (MIPs) has been explored due to their meritful properties (e.g., large number of tailor-made binding sites, sensitive template molecules, high recognition specificity, and structure predictability). This review addresses the recent advances in the application of MIPs toward the sensing of various mycotoxins (e.g., aflatoxins and patulin) along with their fabrication strategies. Then, performance evaluation is made for various types of MIP- and non-MIP-based sensing platforms built for the listed target mycotoxins in terms of quality assurance such as limit of detection (LOD). Further, the present challenges in the MIP-based sensing application of mycotoxins are discussed along with the future outlook in this research field.
Afficher plus [+] Moins [-]Reconstruction, assessment, and calibration of potential toxic elements (PTEs) in a 3500-year-long sedimentary record off the northern coast of Shandong Peninsula, China
2022
Yang, Zhongkang | Sui, Honglei | Zhang, Youai | Li, Yanqiang | Sun, Liguang | Wang, Jun
The marine environment of coastal Shandong Peninsula has been significantly influenced by anthropogenic activities due to the rapid industrialization and economic development in the past decades. However, the sedimentary records of PTEs in the North Yellow Sea have rarely been reported. In this study, a 209-cm-long sediment core was collected off the northern coast of Shandong Peninsula, analyzed for grain size and elemental compositions, and assessed using EF, Igₑₒ and several numerical Sediment Quality Guidelines (SQGs). The EF and Igₑₒ results suggested that sediment profile could be slightly to moderately polluted with As and Sb, while ecological risk assessment using SQGs showed that As, Cr, Sb and Ni in the sediment profile may have a moderate incidence of toxicity. Our results highlighted the nonnegligible ecological risk of Sb in sediments of North Yellow Sea, and great importance should be attached to the fact that many PTEs may also pose a potential ecological risk to the aquatic organisms, even though their concentrations meet the standards of the Marine Sediments Quality (MSQ). Moreover, the reconstructed PTEs record showed a dramatic increase over the past 250 years, which could be related to the intense anthropogenic activities since the Industrial Revolution. The multivariate statistical analysis results indicated that Co, Cr, Cu, Pb, Ni and Zn may be mainly related to the natural origin, while As and Sb could be influenced by both natural weathering sources and anthropogenic activities. This study provides more insights into the historical record of PTEs in the North Yellow Sea, and lays foundation for future comparison of PTEs sedimentary records.
Afficher plus [+] Moins [-]Nitric oxide-mediated alleviation of arsenic stress involving metalloid detoxification and physiological responses in rice (Oryza sativa L.)
2022
Singh, Pradyumna Kumar | Chakrabarty, D. (Debasis) | Dwivedi, Sanjay | Kumar, Amit | Singh, S. P. (Surendra Pratap) | Sinam, Geetgovind | Niranjan, Abhishek | Singh, Poonam C. | Chatterjee, Sandipan | Majumdar, Dipanjali | Tiwari, Manish | Tripathi, Rudra Deo
Rice is a staple crop, and food chain contamination of arsenic in rice grain possesses a serious health risk to billions of population. Arsenic stress negatively affects the rice growth, yield and quality of the grains. Nitric oxide (NO) is a major signaling molecule that may trigger various cellular responses in plants. The protective role of NO during arsenite (AsIII) stress and its relationship with plant physiological and metabolic responses is not explored in detail. Exogenous NO, supplemented through the roots in the form of sodium nitroprusside, has been shown to provide protection vis-à-vis AsIII toxicity. The NO-mediated variation in physiological traits such as stomatal density, size, chlorophyll content and photosynthetic rate maintained the growth of the rice plant during AsIII stress. Besides, NO exposure also enhanced the lignin content in the root, decreased total arsenic content and maintained the activities of antioxidant isoenzymes to reduce the ROS level essential for protecting from AsIII mediated oxidative damage in rice plants. Further, NO supplementation enhanced the GSH/GSSG ratio and PC/As molar ratio by modulating PC content to reduce arsenic toxicity. Further, NO-mediated modulation of the level of GA, IAA, SA, JA, amino acids and phenolic metabolites during AsIII stress appears to play a central role to cope up with AsIII toxicity. The study highlighted the role of NO in AsIII stress tolerance involving modulation of metalloid detoxification and physiological pathways in rice plants.
Afficher plus [+] Moins [-]A selective hydrometallurgical method for scandium recovery from a real red mud leachate: A comparative study
2022
Salman, Ali Dawood | Juzsakova, Tatjána | Jalhoom, Moayyed G. | Abdullah, Thamer Adnan | Le, Phuoc-Cuong | Viktor, Sebestyen | Domokos, Endre | Nguyen, X Cuong | La, D Duong | Nadda, Ashok K. | Nguyen, D Duc
The aim of this study was to recover Sc as the main product and Fe as a by-product from Hungarian bauxite residue/red mud (RM) waste material by solvent extraction (SX). Moreover, a new technique was developed for the selective separation of Sc and Fe from real RM leachates. The presence of high Fe content (∼38%) in RM makes it difficult to recover Sc because of the similarity of their physicochemical properties. Pyrometallurgical and hydrometallurgical methods were applied to remove the Fe prior to SX. Two protocols based on organophosphorus compounds (OPCs) were proposed, and the main extractants were evaluated: bis(2-ethylhexyl) phosphoric acid (D2EHPA/P204) and tributyl phosphate (TBP). The results showed that SX using diethyl ether and tri-n-octylamine (N₂₃₅) was efficient in extracting Fe(III) from the HCl leachate as HFeC1₄. Over 97% of Sc was extracted by D2EHPA extractant under the following conditions; 0.05 mol/L of D2EHPA concentration, A/O phase ratio of 3:1, pH 0–1, 10 min of shaking time, and a temperature of 25 °C. Sc(OH)₃ as a precipitate was efficiently obtained by stripping from the D2EHPA organic phase by 2.5 mol/L of NaOH with a stripping efficiency of 95%. In the TBP system, 99% of Sc was extracted under the following conditions: 12.5% vol of TBP, an A/O phase ratio of 3:1, 10 min of shaking time, and a temperature of 25 °C. The Sc contained in the TBP organic phase could be efficiently stripped by 1 mol/L of HCl with a stripping efficiency of 92.85%.
Afficher plus [+] Moins [-]Overestimation of anthropogenic contribution of heavy metals in precipitation than those of aerosol samples due to different treatment methods
2022
Xu, Yinbo | Li, Qing | Xie, Shiyou | Zhang, Chao | Yan, Fangping | Liu, Yixi | Kang, Shichang | Gao, Shaopeng | Li, Yizhong
Due to increased anthropogenic activities in recent decades, many heavy metal elements have been emitted into the atmosphere and transported to remote regions. The Enrichment factors (EFs) is a normally used method for evaluating the source of heavy metal elements. However, because of some flaws of this method (e.g., higher solubility of heavy metals elements than reference elements in dilute acid), the anthropogenic contributions of some heavy metal elements in the precipitation sample were overestimated. To address this issue, EFs of heavy metal elements of aerosol, precipitation and snowpit samples in a typical remote area of the Tibetan Plateau (TP) were compared. The results showed that the EF values of many heavy metal elements in precipitation and snowpit samples were close to that of aerosol samples treated with dilute acid but usually much higher than those of totally dissolved aerosol samples. Moreover, EF values of most heavy metal elements in the ice core at the margin of the TP were higher than those at central TP, indicating that signal of long-range transport anthropogenic emitted heavy metal elements is weak and may be covered by natural mineral dust sources at glacier region. Therefore, the threshold EF values for determining anthropogenic sources of heavy metal elements in precipitation and ice core samples should be higher than those of aerosols. This study provides new knowledge on investigating anthropogenic sources of heavy metals in precipitation samples at both the TP and other regions of the world.
Afficher plus [+] Moins [-]