Affiner votre recherche
Résultats 1371-1380 de 4,938
A multi-path chain kinetic reaction model to predict the evolution of 1,1,1-trichloroethane and its daughter products contaminant-plume in permeable reactive bio-barriers Texte intégral
2019
Wang, Wenbing | Wu Yanqing,
Permeable reactive bio-barriers (Bio-PRBs) are a new and developing technique for in situ remediation of groundwater contamination. Some remediation technologies have often been impeded by insufficient understanding of contaminant transport and transformation in the subsurface environment. Therefore, advanced knowledge in contaminant transport and reactions in Bio-PRBs will be crucial to the successful practical application of this technique. A two-dimensional reaction model C1 was developed for predicting the multi-path chain kinetic reaction of 1,1,1-trichloroethane (1,1,1-TCA) in Bio-PRBs. This study demonstrates that model C1 is able to predict the 1,1,1-TCA breakthrough time and rapidly evaluate the Bio-PRBs retardation performance. The results show that microbial growth and immobilization are the key factors that affect the retardation and remediation performance of Bio-PRBs. The free growth of microorganisms had significant negative effects on hydraulic conductivity (K) in the zero-valent iron (ZVI) region of free microorganism Bio-PRBs (FM-PRBs). The total head loss in the FM-PRB was 9.0 cm, which was significantly greater than the head loss (6.5 cm) of immobilized microorganism Bio-PRBs (IM-PRBs). Compared to ZVI-PRBs and FM-PRBs, the numerical simulation results reveal that microbial immobilization significantly improves the remediation performance of IM-PRBs by 550.9% and 32.7%, respectively. The dual effect of microorganisms leads to significant differences in the 1,1,1-TCA and daughter products (1,1-dichloroethane, 1,1-dichloroethene, chloroethane and vinyl chloride) contaminant-plume evolution between FM-PRBs and IM-PRBs. In addition, model C1 can be utilized to design standard Bio-PRBs for real site of 1,1,1-TCA contanminated groundwater. To meet the safety standard of groundwater as potable water, the width of IM-PRBs needs to be increased by 24 cm. However, in FM-PRBs, the width needs to be increased by 42 cm. Therefore, IM-PRBs save costs significantly. This work has successfully used a model to optimize Bio-PRBs and to predict 1,1,1-TCA and daughter products contaminant-plume evolution in different Bio-PRBs.
Afficher plus [+] Moins [-]Surface coatings select their micro and macrofouling communities differently on steel Texte intégral
2019
Agostini, Vanessa Ochi | Macedo, Alexandre José | Muxagata, Erik | Pinho, Grasiela Lopes Leães
Previous studies have shown the effect of surface coatings on biofouling; however, they did not take into account the interaction of the micro and macrofouling communities, the effect of substrate orientation and the zooplankton-zoobenthic coupling together. Therefore, the aim of this study was to evaluate the effect of Zn- and Cu₂O-based coatings on micro and macrofouling on steel surfaces, while also observing the role of substrate orientation and zooplankton supply. An experiment was carried out in the Patos Lagoon Estuary in southern Brazil for three months between spring and summer, where ASTM-36 steel plates represented different coatings (Zn- and/or Cu₂O-based) and orientations (vertical and horizontal). To assess the zooplankton supply, sampling was carried out weekly using a 200 μm plankton net. Zn-based coating positively affected microfouling density compared to uncoated surfaces. The same pattern was observed with macrofouling, associated with vagile fauna preference, which represented 70% of the settled macrofoulers. Cu₂O-based antifouling painted surfaces showed the highest microfouling density inhibition, while Zn + Cu₂O-based coating did not affect the bacteria adhesion but showed lower density compared to Zn-based coating alone. The coatings combination showed the highest invertebrate inhibition. In this way, the macrofouling community was more sensitive than microfouling was to the antifouling coatings tested. The substrate orientation only affected macrofouling, horizontal surfaces being more attractive than vertical. Meroplankton, tychoplankton and holoplankton were recorded on the surfaces, although their representation in plankton was not proportional to the recruits recorded on the substrates. This was probably due to fast dispersion, the interactions of other factors and/or ecological succession stage. Surface coating, substrate orientation, and zooplankton supply interacted with the biofouling process on steel in different ways depending on the organism evaluated. Therefore, copper oxide- and zinc-based coatings were not suitable as coatings to avoid the total biofouling establishment.
Afficher plus [+] Moins [-]Genomic mutations after multigenerational exposure of Caenorhabditis elegans to pristine and sulfidized silver nanoparticles Texte intégral
2019
Wamucho, Anye | Unrine, Jason M. | Kieran, Troy J. | Glenn, Travis C. | Schultz, Carolin L. | Farman, Mark | Svendsen, Claus | Spurgeon, David J. | Tsyusko, Olga V.
Our previous study showed heritable reproductive toxicity in the nematode Caenorhabditis elegans after multigenerational exposure to AgNO₃ and silver nanoparticles (Ag-NPs). The aim of this study was to determine whether such inheritable effects are correlated with induced germline mutations in C. elegans. Individual C. elegans lineages were exposed for 10 generations to equitoxic concentrations at EC₃₀ of AgNO₃, Ag-NPs, and sulfidized Ag-NPs (sAg-NPs), a predominant environmentally transformed product of pristine Ag-NPs. The mutations were detected via whole genome DNA sequencing approach by comparing F₀ and F₁₀ generations. An increase in the total number of variants, though not statistically significant, was observed for all Ag treatments and the variants were mainly contributed by single nucleotide polymorphisms (SNPs). This potentially contributed towards reproductive as well as growth toxicity shown previously after ten generations of exposure in every Ag treatment. However, despite Ag-NPs and AgNO₃ inducing stronger reproductive toxicity than sAg-NPs, exposure to sAg-NPs resulted in higher mutation accumulation with significant increase in the number of transversions. Thus our results suggest that other mechanisms of inheritance, such as epigenetics, may be at play in Ag-NP- and AgNO₃-induced multigenerational and transgenerational reproductive toxicity.
Afficher plus [+] Moins [-]Ecological network analysis for an industrial solid waste metabolism system Texte intégral
2019
Guan, Yuru | Huang, Guohe | Liu, Lirong | Huang, Charley Z. | Zhai, Mengyu
Faced with an increasing amount of industrial solid waste (ISW) in the process of rapid industrialization, it is indispensable to carry out ISW metabolism study to realize source and waste reduction. In this study, a new composite waste input-output (WIO) model is developed to examine ISW production and production relationships among different sectors. In particular, the extended methods of network control analysis and network utility analysis are used in the ecological network analysis under two ISW scenarios (i.e. common industrial solid waste (CISW) and hazardous waste (HW) scenarios). Furthermore, comprehensive utilization analysis is first developed to evaluate the ISW utilization level and to guide the planning of sectors with large proportion of ISW production. A case study of Guangdong, China shows that indirect flow analysis can be used to understand the internal ISW metabolism structure. The mining sectors produce a large amount of direct ISW and perform a low level of comprehensive utilization, but they have mutualism relationships with other sectors. The energy transformation (EH) sector in the CISW system has high direct generation intensity and plays as a main controller. The situation of paper manufacturing (MP) sector in HW system is similar to that of EH. Therefore, it is expected that the results of this study will provide scientific foundations for these sectors to formulate future ISW reduction policies.
Afficher plus [+] Moins [-]Streptomyces pactum and sulfur mediated the antioxidant enzymes in plant and phytoextraction of potentially toxic elements from a smelter-contaminated soils Texte intégral
2019
The toxic potentially toxic metals elements (PTEs) discharged from industrial activities and agricultural practices persistently pose multiple hazards to environment and living organisms. Microbe-assisted phytoremediation provide an effective approach to remediate PTEs-contaminated soils. A phytoextraction process involved the application of Streptomyces pactum (Act12, 1.0, 2.0 and 3.0 g kg⁻¹ dry soil, respectively) alone/jointly with sulfur was executed. The main texture of the tested soil was sandy loam and with a pH 8.27. The obtained results showed that the leaf pigments and plant biomass were improved after the application of the Act12, while the shoot fresh weight, chlorophyll a and chlorophyll b decreased by 57.8, 38.2 and 40.7%, respectively, after treatment with sulfur. Similarly, sulfur application facilitated the malondialdehyde (MDA) production by 18.4–33.6% compared to the control (no amendments). Both peroxidase (POD) and superoxide dismutase (SOD) activities were boosted, while the catalase (CAT) activity was suppressed with Act12 alone/jointly with sulfur treatment. The sulfur combined with elevated Act12 levels notably increased the cadmium (Cd) and zinc (Zn) concentrations both in shoots and roots, while the elemental extraction amount showed the removal efficiency following the order: Act12 alone > control > Act12 jointly with sulfur. Taken together, the results suggested that Streptomyces pactum and sulfur assisted the phytoremediation process, while further studies should be conducted in the field to test practical application.
Afficher plus [+] Moins [-]Kinetics and mechanism of photocatalytic degradation of methyl orange in water by mesoporous Nd-TiO2-SBA-15 nanocatalyst Texte intégral
2019
High-efficiency nanophotocatalysts with large specific surface areas have a broad range of application prospects in the catalytic oxidation treatment of organic pollutants in wastewater. A chemical method was used to synthesize a TiO₂ nanophotocatalyst with a mesoporous structure upon which a rare earth metal (Nd) was deposited, namely Nd-TiO₂-SBA-15 (NTS). The prepared NTS was characterized using X-ray diffractometry, transmission electron microscopy, Raman spectroscopy, and X-ray photoelectron spectrometry. The photocatalytic mechanism was explored using scavenger experiments with photoinduced carriers combined with total organic carbon and UV–Vis measurements. At the same time, the kinetic properties of the NTS photocatalytic degradation of methyl orange (MO) were evaluated. The results showed that the deposition of TiO₂ nanoparticles on the surface of the SBA-15 molecular sieve did not change the mesoporous structure, and Nd was uniformly distributed on the surface of the nanophotocatalyst. The photogenerated holes of the NTS played an important role in the photocatalysis process. In addition, the synthesized NTS had good adaptability in the range of pH 2–10. At pH 4, the reaction rate constant (k) of the MO photocatalytic degradation by NTS was 0.011825 mg·(L·min)⁻¹, and the adsorption equilibrium constant (K) was 0.051359 L mg⁻¹. In addition, the photocatalytic degradation rate of MO by NTS remained above 70%, even when the NTS was recycled four times. The NTS showed a good performance after recycling. This work provides a good foundation for the large-scale application of NTS.
Afficher plus [+] Moins [-]Modelling degradation kinetics of metformin and guanylurea in soil microcosms to derive degradation end-points Texte intégral
2019
The degradation of metformin (MET) and guanylurea (GUA) fortified separately in freshly collected two top soils (0–10 cm) from New Zealand's pastoral region was studied under controlled laboratory conditions. Incubation studies were carried at 30 °C under aerobic conditions at 60% of maximum water holding capacity and at two (0.5 mg/kg and 5 mg/kg) nominal soil concentrations. Degradation profiles revealed a bi-phasic pattern of both the compounds with an initial rapid degradation followed by slow dissipation rate, resulting in poor fits by simple first order kinetics. However, the use of three non-linear mathematical models sufficiently described the measured data and well supported by an array of statistical indices to judge model's ability to fit the measured datasets. Further evaluation using box-whisker plots showed that double first-order in parallel (DFOP) and first-order two-compartment (FOTC) models best fitted the data points followed by the Bi-exponential (BEXP) model. Mechanistic assumptions from DFOP and FOTC suggest that degradation of MET and GUA proceeds at two different rates, possibly in two compartments. The calculated DT50 using both models were in the range of 2.7–15.5 days and 0.9–4 days, while 90% dissipation time (DT90) varied between 91 and 123 days and 44 and 137 days for MET and GUA, respectively. Degradation of both compounds were dependent on soil types and properties, incubation conditions and initial substrate concentration. Formation of GUA with decrease in MET concentration over time confirmed that GUA is a transformation product concomitantly formed from aerobic degradation of MET in soil.
Afficher plus [+] Moins [-]Seasonal variation, air-water exchange, and multivariate source apportionment of polycyclic aromatic hydrocarbons in the coastal area of Dalian, China Texte intégral
2019
The concentrations and seasonal variations of polycyclic aromatic hydrocarbons (PAHs) in air and seawater dissolved samples from the coastal area of Dalian were investigated, as well as their air-water exchanges. The average concentrations of PAHs were 27.5 ± 14.6 ng/m³ and 49.5 ± 20.5 ng/L in the air and water, respectively. Phenanthrene was the dominant congener in both air and water dissolved phase. Seasonality was discovered in the air with the concentrations higher in winter than in summer, but not in the water dissolved phase. Air-water exchange trends also displayed apparent seasonality with 3–4 ring PAHs generally being volatilization or equilibrium in summer but deposition in winter, which highlighted the important influence of temperature on the air-water exchange direction of PAHs. The air-water exchange fluxes of individual PAH congeners ranged from −24331 to 6541 ng/m²/d, and the highest deposition and volatilization fluxes both appeared at the industrial areas, which emphasized the influence of point source emission to the magnitude of air-water diffusion flux of PAHs. Multivariate source apportionment approaches, including principle component analysis, diagnostic ratios, and positive matrix factorization, were conducted, which suggested that PAHs in water originated from multiple sources. Frequent port transport correlated vehicle/ship emission rather than coal combustion may be the primary contributor of PAHs to the coastal air and water.
Afficher plus [+] Moins [-]Cotransport of Herbaspirillum chlorophenolicum FA1 and heavy metals in saturated porous media: Effect of ion type and concentration Texte intégral
2019
Li, Xiaohui | Xu, Hongxia | Gao, Bin | Yang, Zhidong | Sun, Yuanyuan | Shi, Xiaoqing | Wu, Jichun
Predicting the cotransport of functional microorganisms and heavy metals in porous media is essential to both bioremediation and pollutant risk assessment. In this study, batch and column experiments were conducted to explore the cotransport behaviors of functional bacteria (FA1) and heavy metals (Pb²⁺/Cd²⁺) in saturated sand media under different conditions. The sorption capacity of heavy metals on FA1 was much greater than that of the sand, while both FA1 and sand showed stronger affinity to Pb²⁺ than Cd²⁺. The surface properties, especially zeta potential, of the bacteria and sand were altered by metal adsorption. As a result, the co-existence of Pb²⁺ decreased the transport of FA1 more significantly than that of Cd²⁺, and the influence was more significant with higher heavy metal concentration. On the other hand, the co-existence of FA1 inhibited the mobility of Pb²⁺ and Cd²⁺ in most scenarios, except when the cotransport concentration of Pb²⁺ was 5 mg L⁻¹, and the inhibition was more pronounced for Pb²⁺ than Cd²⁺. Increase in metal concentrations decreased the FA1-associated Pb²⁺/Cd²⁺ in effluents due to the remarkable decrease in FA1 mobility, and free soluble Pb²⁺/Cd²⁺ became the major migration species. In addition, due to stronger attractive forces and affinity between Pb²⁺ and FA1, nearly all presorbed-Pb²⁺ by sand was remobilized by FA1 and transported mainly in FA1-associated form other than soluble Pb²⁺. Findings from this study indicated that the cotransport of biocolloids and heavy metals are highly sensitive to the ion type and concentration, and evaluation of their transport in the subsurface should be carefully carried out to avoid inaccurate estimations.
Afficher plus [+] Moins [-]Chronic exposure to non-eruptive volcanic activity as cause of bronchiolar histomorphological alteration and inflammation in mice Texte intégral
2019
Camarinho, R. | Garcia, P.V. | Choi, H. | Rodrigues, A.S.
It is estimated that 10% of the worldwide population lives in the vicinity of an active volcano. However, volcanogenic air pollution studies are still outnumbered when compared with anthropogenic air pollution studies, representing an unknown risk to human populations inhabiting volcanic areas worldwide. This study was carried out in the Azorean archipelago of Portugal, in areas with active non-eruptive volcanism. The hydrothermal emissions within the volcanic complex of Furnas (São Miguel Island) are responsible for the emission of nearly 1000 tons of CO₂ per day, along with H₂S, the radioactive gas – radon, among others. Besides the gaseous emissions, metals (e.g., Hg, Cd, Al, Ni) and particulate matter are also released into the environment. We test the hypothesis that chronic exposure to volcanogenic air pollution alters the histomorphology of the bronchioles and terminal bronchioles, using the house mouse, Mus musculus, as bioindicator species. Mus musculus were live-captured at three different locations: two villages with active volcanism and a village without any type of volcanic activity (reference site). The histomorphology of the bronchioles (diameter, epithelium thickness, smooth muscle layer thickness, submucosa thickness and the histological evaluation of the peribronchiolar inflammation) and of the terminal bronchioles (epithelium thickness and classification) were evaluated. Mice chronically exposed to volcanogenic air pollution presented bronchioles with increased epithelial thickness, increased smooth muscle layer, increased submucosa thickness and increased peribronchiolar inflammation. Similarly, terminal bronchioles presented structural alterations consistent with bronchodysplasia. For the first time we demonstrate that chronic exposure to non-eruptive volcanically active environments causes inflammation and histomorphological alterations in mice lower airways consistent with asthma and chronic bronchitis. These results reveal that chronic exposure to non-eruptive volcanic activity represents a risk factor that can affect the health of the respiratory system of humans inhabiting hydrothermal areas.
Afficher plus [+] Moins [-]