Affiner votre recherche
Résultats 1381-1390 de 7,292
The efficient persistence and migration of Cupriavidus gilardii T1 contribute to the removal of MCPA in laboratory and field soils Texte intégral
2022
Pan, Dandan | Xu, Yue | Ni, Yaxin | Zhang, Houpu | Hua, Rimao | Wu, Xiangwei
The application of exogenous biodegradation strains in pesticide-polluted soils encounters the challenges of migration and persistence of inoculants. In this study, the degradation characteristics, vertical migration capacity, and microbial ecological risk assessment of an enhanced green fluorescent protein (EGFP)-tagged 2-Methyl-4-chlorophenoxyacetic acid (MCPA)-degrading strain Cupriavidus gilardii T1 (EGFP) were investigated in the laboratory and field soils. The optimum remediation conditions for T1 (EGFP) was characterized in soils. Meanwhile, leaching experiments showed that T1 (EGFP) migrated vertically downwards in soil and contribute to the degradation of MCPA at different depths. After inoculation with T1 (EGFP), a high expression levels of EGFP gene was observed at 28 d in the laboratory soil and at 45 d in the field soil. The degradation rates of MCPA were ≥ 60% in the laboratory soil and ≥ 48% in the field soil, indicating that T1 (EGFP) can efficiently and continuously remove MCPA in both laboratory and field conditions. In addition, the inoculation of T1 (EGFP) not only showed no significant impact on the soil microbial community structure but also can alleviate the negative effects induced by MCPA to some extent. Overall, our findings suggested that T1 (EGFP) strain is an ecologically safe resource for the in situ bioremediation of MCPA-contaminated soils.
Afficher plus [+] Moins [-]Responses of microbial community composition and function to biochar and irrigation management and the linkage to Cr transformation in paddy soil Texte intégral
2022
Xiao, Wendan | Ye, Xuezhu | Ye, Zhengqian | Zhang, Qi | Zhao, Shouping | Chen, De | Gao, Na | Huang, Miaojie
Combining biochar with irrigation management to alter the microbial community is a sustainable method for remediating soils contaminated by heavy metals. However, studies on how these treatments promote Cr(VI) reduction are limited, and the corresponding microbial mechanisms are unclear. Therefore, we conducted a pot experiment to explore the responses of soil microbial communities to combined biochar amendment and irrigation management strategies and their involvement in Cr transformation in paddy soils. Six treatments were established using varying concentrations of biochar (0, 1, and 2% [w/w]) combined with two irrigation management strategies (continuous flooding [CF] and dry–wet alternation [DWA]). The results showed that the combined biochar addition and irrigation management strategy significantly altered soil pH, redox potential, organic matter content, and Fe(II) and sulfide concentrations. In addition, the Cr(VI) concentration under CF irrigation management was conspicuously lower (48.2–54.4%) than that under DWA irrigation management. Biochar amendment also resulted in a substantial reduction (8.8–27.4%) in Cr(VI) concentration. Moreover, the changes in soil physicochemical properties remarkably affected the soil microbial community. The microbial diversity and abundance significantly increased with biochar amendment. Furthermore, the combined biochar amendment and CF strategy stimulated the growth of Geobacter- and Anaeromyxobacter-related Fe(III)-reducing bacteria, Gallionella-related Fe(II)-oxidizing bacteria, and Desulfovibro- and Clostridium-related sulfate-reducing bacteria, which simultaneously facilitated the generation of Fe(II) and sulfide, thereby enhancing Cr(VI) reduction. Consequently, our results suggest that the effectively increased abundance of Fe-reducing/oxidizing bacteria and sulfate-reducing bacteria via combined CF irrigation management and biochar addition may be a key factor in reducing Cr(VI) in paddy soil. The keystone genera responsible for Cr(VI) reduction were Geobacter, Anaeromyxobacter, Gallionella, Desulfovibro, and Clostridium. This study provides novel insights into the coupling mechanism of the Fe/S/Cr transformation mediated by Fe-reducing/oxidizing bacteria and sulfate-reducing bacteria.
Afficher plus [+] Moins [-]Systematic multi-omics reveals the overactivation of T cell receptor signaling in immune system following bisphenol A exposure Texte intégral
2022
Park, Yoo-Jin | Rahman, Md. Saidur | Pang, Won-Ki | Ryu, Do-Yeal | Jung, Min-Ji | Amjad, Shehreen | Kim, Jun-Mo | Pang, Myung-Geol
Bisphenol A (BPA) is pervasive in the environment, and exposure to BPA may increase the incidence of noncommunicable diseases like autoimmune diseases and cancer. Although BPA causes immunological problems at the cellular level, no system-level research has been conducted on this. Hence, in this study, we aimed to gain a better understanding of the biological response to BPA exposure and its association with immunological disorders. For that, we explored the transcriptome and the proteomic modifications at the systems and cellular levels following BPA exposure. Our integrated multi-omics data showed the alteration of the T cell receptor (TCR) signaling pathway at both levels. The proportion of enlarged T cells increased with upregulation of CD69, a surface marker of early T cell activation, even though the number of T cells reduced after BPA exposure. Additionally, on BPA exposure, the levels of pLCK and pSRC increased in T cells, while that of pLAT decreased. Following BPA exposure, we investigated cytokine profiles and discovered that chitinase 3 Like 1 and matrix metalloproteinase 9 were enriched in T cells. These results indicated that T cells were hyperactivated by CD69 stimulation, and phosphorylation of SRC accelerated on BPA exposure. Hence, alteration in the TCR signaling pathway during development and differentiation due to BPA exposure could lead to insufficient and hasty activation of TCR signaling in T cells, which could modify cytokine profiles, leading to increased environmental susceptibility to chronic inflammation or diseases, increasing the chance of autoimmune diseases and cancer. This study enhances our understanding of the effects of environmental perturbations on immunosuppression at molecular, cellular, and systematic levels following pubertal BPA exposure, and may help develop better predictive, preventative, and therapeutic techniques.
Afficher plus [+] Moins [-]Lifelong exposure to pyrethroid insecticide cypermethrin at environmentally relevant doses causes primary ovarian insufficiency in female mice Texte intégral
2022
Ma, Xiaochen | Zhang, Wei | Song, Jingyi | Li, Feixue | Liu, Jing
Pyrethroids are a class of widely used insecticides. Our recent epidemiological study of Chinese women reported that pyrethroid exposure was positively associated with the risk of primary ovarian insufficiency (POI). In this study, we utilized cypermethrin (CP), the most frequently detected pyrethroid in the environment, to recognize how lifelong and low-dose exposure to pyrethroids affects ovarian functions and the underlying mechanism(s). Female mice were exposed to CP at doses of human dietary intake of 6.7 μg/kg/day, an acceptable daily intake (ADI) of 20 μg/kg/day, or the chronic reference dose (RfD) of 60 μg/kg/day, starting from gestational day 0.5 until 44-week-old. We assessed effects on fertility, serum hormone levels, ovarian follicular development and ovarian transcriptomic profiles. Chronic exposure to CP at doses of ADI and RfD caused a significant reduction in the size of the primordial follicle pool on postnatal day (PND) 5 and the number of all types of follicles in 44-week-old mice, lower estrogen and higher gonadotropin levels, as well as decreased fertility. Significant increase in apoptosis and decrease in cell proliferation were observed in CP-exposed ovarian follicles from PND 5 and 44-week-old mice. Ovarian transcriptomic data showed that the pro-apoptotic protein BMF and the cell cycle inhibitor p27 were significantly up-regulated in CP-exposed ovaries. Cyp17a1, Cyp19a1 and Hsd17b1 genes involved in the key steps of steroidogenesis were down-regulated in the ovaries of female mice exposed to CP. This study first reported that lifelong exposure to CP at doses of ADI or RfD caused an ovarian phenotype similar to human POI in female mice and provided a mechanistic explanation. Our findings suggest that lifelong exposure to pyrethroids of low doses, which are recommended as ‘safe’ dosages, may have a significant impact on the ovarian health of female mammals and humans.
Afficher plus [+] Moins [-]Distribution, source and behavior of rare earth elements in surface water and sediments in a subtropical freshwater lake influenced by human activities Texte intégral
2022
Jiang, Chunlu | Li, Yanhao | Li, Chang | Zheng, Lanlan | Zheng, Liugen
As tracers, rare earth elements (REEs) can reflect the influence of human activities on the environmental changes in aquatic systems. To reveal the geochemical behavior of REEs in a water–sediment system influenced by human activities, the contents of REEs in the surface water and sediment in the Chaohu Lake Basin were measured by inductively coupled plasma mass spectrometry (ICP–MS). The results show that the ΣREE contents in the surface water are 0.10–0.850 μg L⁻¹, the ΣREE contents in the sediments are 71.14–210.01 μg g⁻¹, and the average contents are 0.24 μg L⁻¹ and 126.72 μg g⁻¹, respectively. Almost all water and sediment samples have obvious light REE (LREE) enrichment, which is the result of the input of LREE-rich substances released by natural processes and human activities (industrial and agricultural production). Under the alkaline water quality conditions of Chaohu Lake, REEs (especially LREEs) are easily removed from water by adsorption/coprecipitation reactions with suspended colloidal particles, which leads to the enrichment of LREEs in sediments. The Ce anomaly of the water–sediment system is related to the oxidation environment, while the Eu anomaly is related to the plagioclase crystallization. Significant Gd anomalies was observed in the downstream of rivers flowing through urban areas, which was related to the anthropogenic Gd wastewater discharged by hospitals. The ∑REE–δEu and provenance index (PI) discrimination results are consistent, indicating that the sediments in Chaohu Lake mainly come from rivers flowing through the southwest farmland. Furthermore, the spatial distribution of REEs shows that these tributaries are significantly affected by agricultural activities. The distribution and accumulation of REEs in Chaohu Lake are the result of the interaction of natural and human processes. The results can provide a scientific reference for the distribution and environmental behavior of REEs in aquatic environments disturbed by human beings.
Afficher plus [+] Moins [-]Effect of fulvic acid co-precipitation on biosynthesis of Fe(III) hydroxysulfate and its adsorption of lead Texte intégral
2022
Bao, Yanping | Lai, Jinhao | Wang, Yishun | Fang, Zheng | Su, Yongshi | Alessi, Daniel S. | Bolan, Nanthi S. | Wu, Xiaolian | Zhang, Yan | Jiang, Xueding | Tu, Zhihong | Wang, Hailong
Iron (III) co-precipitation with dissolved organic matter (DOM) is pervasive in many natural environments. However, the effects of DOM on the formation of Fe(III) hydroxysulfate (FHS) and its environmental implications are poorly understood. In this study, fulvic acid (FA) was used as a model DOM compound, and experiments were devised to investigate the effects of FA on the formation of FHS. In addition, the Pb(II) adsorption capabilities of FHSs biosynthesized under various FA dosages, including kinetics and sorption isotherm experiments, were conducted. These experiments showed that co-precipitation of FA promoted the formation of Fe-FA composites, FA-doped schwertmannite, and small particles of jarosite. Co-precipitates are more enriched in carboxyl (–COOH) functional groups due to their preferential binding with FHS. The adsorption kinetics, isotherms and mechanisms of Pb onto the biosynthesized FHSs were then comprehensively characterized and modeled. Though the specific surface area decreased with increasing FA loading, the introduction of FA into FHSs increased Pb(II) adsorption, with the highest concentration of FA addition improving the removal capacity of Pb(II) to 91.54%. Kinetics studies and intra-particle diffusion models indicated that the adsorption of Pb(II) onto the FHSs was correlated with the number of active sites, and two adsorption steps: surface adsorption and the diffusion of Pb(II) in channels inside the biosynthesized FHSs, are suggested. The adsorption mechanism was attributed to cation exchange between Pb(II) and –OH and –COOH functional groups, and the co-precipitated FA provided additional sites for Pb(II) adsorption by FHS.
Afficher plus [+] Moins [-]The response of steroid estrogens bioavailability to various sorption mechanisms by soil organic matter extracted with sequential alkaline-extraction method from an agriculture soil Texte intégral
2022
Song, Xiaoming | Zhang, Zhipeng | Wen, Yujuan | Zhang, Wei | Xie, Yi | Cao, Nan | Sun, Dong | Yang, Yuesuo
The long-term groundwater contamination risks posed by steroidal estrogens (SEs) in animal-manured agricultural soils are closely associated with the soil organic matter (SOM) content and composition. In this study, the bioavailability of estrone (E1) and 17β-estradiol (17β-E2) under different sorption mechanism in humic acids (HA1 and HA2) and humin (HM) extracted with sequential alkaline-extraction technique (SAET) were examined. These SOMs extracted by SAET showed various properties and sorption characteristics for SEs. The alkyl carbon and condensed SOM increased during SAET, but aromatic carbon decreased and the same trend for polarity. Quick sorption was the major SEs sorption mechanism on HA1 and HA2, which contributed more than 69%; whilst slow sorption rate was about 50% in soil and HM. The logKₒc values were proportional to the TOC of SOM according to Freundlich fitting, and the sorption capacity of sorbent for E1 and 17β-E2 was related to the logKₒw values, indicating that the main mechanism controlling the SEs sorption was hydrophobic interaction. The larger micropore volume of HM and soil was more conducive to the micropore filling of SEs. Meanwhile, the specific sorption of SEs on condensed domain of SOM was the main reason for the strong desorption hysteresis and slow sorption in HM and soil. The SEs degradation rate was positively correlated with the contribution rate of quick adsorption and negatively correlated with the contribution rate of slow adsorption, indicating that the bioavailability of SEs sorbed by hydrophobic interaction was higher than that of micropore filling or specific sorption, which was also the reason for the low bioavailability of SEs in HM and soil. This work confirms the regulation of on-site SOM compositions and their properties on SEs sorption and bioavailability. Characterization of these details is crucial for the improved prediction of long-term risks to groundwater.
Afficher plus [+] Moins [-]Effects of long-term perfluorooctane sulfonate (PFOS) exposure on activated sludge performance, composition, and its microbial community Texte intégral
2022
Lu, Bianhe | Qian, Jin | He, Fei | Wang, Peifang | He, Yuxuan | Tang, Sijing | Tian, Xin
The widespread presence and persistence of perfluorooctane sulfonate (PFOS) in wastewater treatment plants, as well as its toxicity and bioaccumulation potential, necessitates the investigation on their impact on bioreactor performance. A 48-day exposure test was adopted to study the effects of low (10 μg L-1) and high (1000 μg L-1) PFOS concentrations in a sequencing batch reactor on the performance, composition, and microbial community of activated sludge. The results suggested that adding PFOS at low and high concentrations lowered the removal efficiency of total nitrogen by 22.48% (p < 0.01) and 16.30% (p < 0.01) respectively, while enhanced that of total phosphorus by 1.87% (p > 0.05) and 7.07% (p < 0.05) respectively, compared with the control group. The addition of PFOS also led to the deterioration of activated sludge dewatering performance. Composition and spectroscopic measurements revealed that the PFOS dosage changed the composition of the activated sludge. Furthermore, the PFOS altered the structure and function of the activated sludge microbial community as well as key enzyme activities.
Afficher plus [+] Moins [-]Spatiotemporal distribution and environmental control factors of halocarbons in the Yangtze River Estuary and its adjacent marine area during autumn and spring Texte intégral
2022
Zou, Yawen | He, Zhen | Liu, Chunying | Yang, Gui-Peng
The oceanic production and release of volatile halocarbons (VHCs) to the atmosphere play a vital role in regulating the global climate. In this study, seasonal and spatial variations in VHCs, including trichlorofluoromethane (CFC-11), methyl iodide (CH₃I), dibromomethane (CH₂Br₂), and bromoform (CHBr₃), and environmental parameters affecting their concentrations were characterized in the atmosphere and seawater of the Yangtze River Estuary and its adjacent marine area during two cruises from October 17 to October 26, 2019 and from May 12 to May 25, 2020. Significant seasonal variations were observed in the atmosphere and seawater because of seasonal differences in the prevalent monsoon, water mass (Yangtze River Diluted Water), and biogenic production. VHCs concentrations were positively correlated with Chl-a concentrations in the surface water during autumn. The average sea-to-air fluxes of CH₃I, CH₂Br₂, and CHBr₃ in autumn were 19.7, 4.0, and 7.6 nmol m⁻² d⁻¹, respectively, while those in spring were 6.3, 6.4, and −3.6 nmol m⁻² d⁻¹. In the ship-based incubation experiments, ocean acidification and dust deposition had no significant effects on VHCs concentrations. The concentrations of CH₂Br₂ and CHBr₃ were significantly positively correlated with phytoplankton biomass under lower pH condition (M3: pH 7.9). This result indicated that CH₂Br₂ and CHBr₃ concentrations were mainly related to the biological release.
Afficher plus [+] Moins [-]Effect of carrier gas during pyrolysis on the persistence and bioavailability of polycyclic aromatic hydrocarbons in biochar-amended soil Texte intégral
2022
Godlewska, Paulina | Oleszczuk, Patryk
In this study the persistence (based on extractable, Cₜₒₜ) and bioavailability (based on freely dissolved content, Cfᵣₑₑ) of polycyclic aromatic hydrocarbons (PAHs) in biochar-amended soil was investigated. Biochar produced at 500 or 700 °C from sewage sludge (BC) or sewage sludge and willow (W) mixture (BCW) in an atmosphere of nitrogen (N₂) or carbon dioxide (CO₂) was evaluated. The biochars were applied to the real soil (podzolic loamy sand) at a dose of 2% (w/w). The content of Cₜₒₜ and Cfᵣₑₑ PAHs was monitored for 180 days. The biochar production conditions determined the Cₜₒₜ and Cfᵣₑₑ PAHs in the soil. A change of carrier gas from N₂ to CO₂ caused an increase in Cₜₒₜ PAH losses in the soil from 19 to 75% for the biochar produced from SL and from 49 to 206% for the co-pyrolyzed biochar. As regards Cfᵣₑₑ PAHs, the change from N₂ to CO₂ increased the losses of Cfᵣₑₑ PAHs only for the biochar derived from SL at a temperature of 500 °C (by 21%). In the soil with the other biochars (produced at 700 °C from SL as well as at 500 and 700 °C from SL/W), the Cfᵣₑₑ increased from 17 to 26% compared to the same biochars produced in an atmosphere of N₂.
Afficher plus [+] Moins [-]