Affiner votre recherche
Résultats 1391-1400 de 6,558
Agricultural plastic mulching as a source of microplastics in the terrestrial environment Texte intégral
2020
Huang, Yi | Liu, Qin | Jia, Weiqian | Yan, Changrong | Wang, Jie
Plastic mulching is suspected to be a significant source of microplastics in terrestrial environments owing to its intensive application and improper disposal. However, there has been a comparative lack of studies examining this hypothesis. In this study, the occurrence of macroplastics in agricultural soils was investigated by analysing 384 soil samples collected from 19 provinces across China. Additionally, the abundance of microplastics was investigated in potential hotspots that have carried out plastic mulching for over 30 years. Macroplastic concentrations in the soil samples ranged from 0.1 to 324.5 kg/ha, with an average of 83.6 kg/ha; the concentrations were higher in western China than in eastern China. A highly significant linear correlation (R² = 0.61) was found between the consumption of mulching film and the plastic residue in soils, indicating plastic film mulching may be a major source of macroplastics. The abundances of microplastic particles increased over time in the locations where plastic mulching was continuously employed, with concentrations of 80.3 ± 49.3, 308 ± 138.1, and 1075.6 ± 346.8 pieces/kg soil in fields with 5, 15, and 24 y of continuous mulching, respectively. Fourier transform infrared analyses revealed that the composition of the microplastics matched that of the mulching films, suggesting the microplastic particles originated from the mulching films. These findings confirm that plastic mulching is an important source of macroplastic and microplastic contamination in terrestrial environments. Further studies to investigate the microplastic hazards in soils are thus necessary.
Afficher plus [+] Moins [-]Internal distribution and fate of persistent organic contaminants (PCDD/Fs, DL-PCBs, HBCDs, TBBPA, and PFASs) in a Bos Taurus Texte intégral
2020
Shin, Eun-su | Jeong, Yuna | Barghi, Mandana | Seo, Sung-Hee | Kwon, Sae Yun | Chang, Yoon Seok
While terrestrial organisms such as livestock are consumed regularly, studies of internal distribution and bioaccumulation of persistent organic pollutants (POPs) have been focused more on aquatic organisms. In this study, we have assessed the internal distribution and fate of legacy (PCDD/Fs and PCBs) and emerging POPs (HBCDs and PFASs), and TBBPA in 42 tissues of a Bos Taurus. PCDD/Fs, DL-PCBs, and HBCDs were found 3, 4, and 4-fold higher in the lipid-rich organs (subcutaneous fat, visceral fat, large intestine) compared to the remaining organs and muscles, owing to their hydrophobic properties. The TBBPA concentration in the excrement was 36-fold higher compared to the average tissues, suggesting a short internal half-life of TBBPA. Among PFASs, PFUnDA displayed 98% contribution from all ionic PFASs in the tissues due to its strong binding affinity, high exposure via feed and water, and increasing emergence of PFUnDA and its precursors in the Southeast Asian countries. While our study suggests that, at the moment, there is no significant health risks to the general Korean population, the future changes in environmental exposure as well as the internal dynamics and fate of various POPs species should be kept in mind when consuming various parts of livestock.
Afficher plus [+] Moins [-]Benthic trace metal fluxes in a heavily contaminated bay in China: Does the sediment become a source of metals to the water column? Texte intégral
2020
Li, Li | Zhen, Xiaotong | Wang, Xiaojing | Ren, Yijun | Hu, Limin | Bai, Yazhi | Liu, Jihua | Shi, Xuefa
Over three different seasons, seawater, porewater and sediment samples were collected from Jinzhou Bay, a previously heavily contaminated bay, to quantitatively assess the benthic flux of trace metals after a reduction in fluvial/sewage discharge for almost three decades. The spatial distribution patterns of trace metals in seawater, surface sediment, as well as the vertical distribution patterns of metals in porewater and solid phases in short sediment cores were reported. Metal concentrations in seawater and sediment all showed much higher Cd and Zn concentrations inside the Jinzhou Bay compared to the rest of Bohai Sea area. Zn, Ni, Pb and Co all had average benthic fluxes coming out of the sediments to the water column, contributing about 0.5%, 0.3%, 1.4% and 14% to their current standing stock in Jinzhou Bay. Seasonal difference was also identified in seawater and porewater, as well as in the benthic fluxes. In general, benthic fluxes and porewater concentrations all tended to be higher in summer, implying a close relationship between benthic flux and the temperature-dependent organic matter degradation process at the sediment-water interface.Currently, there are clearly still other sources, possibly fluvial/sewage discharge, as the main source of trace metals in Jinzhou Bay waters. For Cd and Cu, concentrations in the water column remain high on an annual basis indicating that sediment still acts as a sink. Conversely, for Pb, Zn, Co, and Ni, the sediment is beginning to act as a source to the water column. Although this may not yet be significant, it will become more and more important with time, and can last for hundreds to thousands of years.
Afficher plus [+] Moins [-]Environmental and human health risks of arsenic in gold mining areas in the eastern Amazon Texte intégral
2020
Souza Neto, Hamilton Ferreira de | Pereira, Wendel Valter da Silveira | Dias, Yan Nunes | Souza, Edna Santos de | Teixeira, Renato Alves | Lima, Mauricio Willians de | Ramos, Silvio Junio | Amarante, Cristine Bastos do | Fernandes, Antônio Rodrigues
Knowledge of arsenic (As) levels in gold (Au) mining areas in the Amazon is critical for determining environmental risks and the health of the local population, mainly because this region has the largest mineral potential in Brazil and one of the largest in the world. The objective of this study was to assess the environmental and human health risks of As in tailings from Au exploration in the eastern Amazon. Samples were collected from soils and tailings from different exploration forms from 25 points, and the total concentration, pollution indexes and human health risk were determined. Concentrations of As were very high in all exploration areas, especially in tailings, whose maximum value reached 10,000 mg kg⁻¹, far above the investigation value established by the Brazilian National Council of the Environment, characterizing a polluted area with high environmental risk. Exposure based on the daily intake of As demonstrated a high health risk for children and adults, whose non-carcinogenic risk indexes of 17.8, extremely above the acceptable limit (1.0) established by the United States Environmental Protection Agency. High levels of As in reactive fractions in underground, cyanidation, and colluvium mining areas, as well as extremely high gastric and intestinal bioaccessibility were found, suggesting that high levels may be absorbed by the local population. The results show that the study area is highly polluted through Au mining activities, putting the environment and population health at risk, and that there is an urgent need for intervention by the environmental control agencies for remediation.
Afficher plus [+] Moins [-]Digestive solubilization of Cd in highly-contaminated sediment by marine deposit feeders: The roles of intestinal surfactants in Cd mobilization and Re-Adsorption processes Texte intégral
2020
Wu, Xing | Klerks, Paul L. | Bi, Ran | Liu, Wenhua | Yuan, Zi-Dan | Ma, Xu | Zhang, Guo-Qing | Wang, Shao-Feng | Jia, Yong-Feng
Marine deposit feeders are of ecological significance in transferring sedimentary Cd along aquatic food chains. A key process for this transfer is these organisms’ dietary uptake of Cd via solubilization of Cd present in ingested contaminated sediment. To better understand the bioavailability of sedimentary Cd to deposit feeders, the present study used in vitro extraction experiments to explore the contribution of different digestive agents (proteins, amino acids and surfactants) to the solubilization of Cd from sediment collected in a highly-contaminated Chinese bay. This was done for various commercially-available mimetic digestive agents (the protein BSA, a mixture of amino acids, and the surfactants rhamnolipid and SDS), and for proteins and surfactants collected from the gut juice of a sipunculan worm. The Cd mobilization capacity of BSA was significantly higher than that of the amino acids and the commercial surfactants. In the presence of BSA, > 70% of the released Cd became associated with this protein. In contrast, the digestive proteins from the sipunculan had a lower Cd mobilization capacity than was the case for the other digestive agents and the majority of the released Cd (∼80%) was associated with small molecular weight fractions. The differences in Cd mobilization between the BSA and the digestive proteins were attributed to differences in their sediment-adsorption tendencies and their Cd-complexing capacities. While the digestive surfactants had minor effects on the release of sedimentary Cd, they significantly enhanced Cd mobilization by the digestive proteins when both were present simultaneously. Our results suggest that the characteristics of proteins should be considered when using commercially-available mimetic digestive agents to explore Cd bioavailability in sediments. Furthermore, digestive surfactants seem to have important effects on the solubilization of Cd during gut passage by reducing the adsorption of the digestive proteins to the sediments.
Afficher plus [+] Moins [-]Microplastic pollution research methodologies, abundance, characteristics and risk assessments for aquatic biota in China Texte intégral
2020
Fu, Zhilu | Chen, Guanglong | Wang, Wenjing | Wang, Jun
The widespread presence of microplastics in global aquatic ecosystems has aroused growing concern about the potential impacts of microplastics on aquatic biota. In marine and freshwater environments, microplastics are distributed pervasively within water bodies from the upper water column to the bottom layer, making them available to a large variety of aquatic organisms that inhabit different locations. The ingestion of microplastic particles may cause harm to aquatic organisms. Although China’s aquatic environments have been seriously polluted by microplastics, the impacts of microplastics on aquatic biota remain to be elucidated. This review summarizes the current state of knowledge about microplastic pollution in aquatic biota in China; specifically, the concentration and characteristics of microplastic particles in aquatic organisms from both seawater and freshwater environments are discussed. The results showed that various aquatic organisms in China have been found to consume microplastics. The average number of microplastic pieces discovered in biota ranged from 0.07 particles to 164 particles per individual in different organisms. The most frequently observed colors of microplastics detected in biota were blue and transparent, and the detected microplastics mainly consisted of fibers. In addition, the impacts of microplastics on aquatic organisms, including physical impacts, chemical impacts, the trophic transfer of microplastics and the potential risks to humans, were discussed. Finally, knowledge gaps were identified in order to guide future studies.
Afficher plus [+] Moins [-]Linking elevated blood lead level in urban school-aged children with bioaccessible lead in neighborhood soil Texte intégral
2020
Wu, Yangyang | Lou, Jianing | Sun, Xue | Ma, Lena Q. | Wang, Jueyang | Li, Mengya | Sun, Hong | Li, Hongbo | Huang, Lei
Lead (Pb) exposure is known to affect the health of children while soil Pb is an important contributor to human Pb exposure. To analyze the effects of both environmental and other factors, especially total and bioaccessible Pb in neighborhood soil, on school-aged urban children’s blood lead level (BLL), 75 children (6–11 years old) were recruited from an industry city in eastern China for BLL measurement and questionnaire survey. Soil samples were collected from their living neighborhoods and measured for total and bioaccessible Pb. The mean BLL was 4.82 μg dL⁻¹, with 42 out of 75 children having BLL exceeding the international guideline of 5 μg dL⁻¹. Low Pb contamination was observed in soil with total Pb ranging from 12.5 to 271 mg kg⁻¹ (mean 34.3 mg kg⁻¹). Based on the in vitro Solubility Bioaccessibility Research Consortium (SBRC) gastric fluid extraction, bioaccessible Pb in soil ranged from 0.40 to 79.1 mg kg⁻¹ (mean 7.58 mg kg⁻¹) with Pb bioaccessibility ranging from 1.74 to 68.1 (mean 19.9%). When BLL was correlated with total Pb in soil, insignificant linear relationship was observed (P > 0.05, correlation coefficient 95%CI = −0.047–0.40, R² = 0.07). However, when BLL was correlated with soil bioaccessible Pb or Pb bioaccessibility, much stronger linear relationships were observed (P < 0.01, correlation coefficient 95%CI = 0.28–0.64, R² = 0.16–0.20), suggesting that bioaccessible Pb was a much stronger predictor of BLL. In addition, strong associations were also observed between BLL and social factors such as house decoration, residence time, and personal habits, suggesting that both soil Pb contamination and social factors play important roles in elevating BLL for city children.
Afficher plus [+] Moins [-]Spatiotemporal variations and driving factors of dust storm events in northern China based on high-temporal-resolution analysis of meteorological data (1960–2007) Texte intégral
2020
Xu, Chuanqi | Guan, Qingyu | Lin, Jinkuo | Luo, Haiping | Yang, Liqin | Tan, Zhe | Wang, Qingzheng | Wang, Ning | Tian, Jing
Northern China is a significant source of dust source in Central Asia. Thus, high-resolution analysis of dust storms and comparison of dust sources in different regions of northern China are important to clarify the formation mechanism of East Asian dust storms and predict or even prevent such storms. Here, we analyzed spatiotemporal trends in dust storms that occurred in three main dust source regions during 1960–2007: Taklimakan Desert (western region [WR]), Badain Jaran and Tengger Deserts (middle region [MR]), and Otindag Sandy Land (eastern region [ER]). We analyzed daily dust storm frequency (DSF) at the 10-day scale (first [FTDM], middle [MTDM], and last [LTDM] 10 days of a month), and investigated the association of dust storm occurrences with meteorological factors. The 10-day DSF was greatest in the FTDM (accounting for 77.14% of monthly occurrences) in the WR, MTDM (45.85%) in the MR, and LTDM (72.12%) in the ER, showing a clear trend of movement from the WR to the ER. Temporal analysis of DSF revealed trend changes over time at annual and 10-day scales, with mutation points at 1985 and 2000. We applied single-factor and multiple-factor analyses to explore the driving mechanisms of DSF at the 10-day scale. Among single factors, a low wind-speed threshold, high solar radiation, and high evaporation were correlated with a high DSF, effectively explaining the variations in DSF at the 10-day scale; however, temperature, relative humidity, and precipitation poorly explained variations in DSF. Similarly, multiple-factor analysis using a classification and regression tree revealed that maximum wind speed was a major influencing factor of dust storm occurrence at the 10-day scale, followed by relative humidity, evaporation, and solar radiation; temperature and precipitation had weak influences. These findings help clarify the mechanisms of dust storm occurrence in East Asia.
Afficher plus [+] Moins [-]Sewage sludge application as a vehicle for microplastics in eastern Spanish agricultural soils Texte intégral
2020
van den Berg, Pim | Huerta-Lwanga, Esperanza | Corradini, Fabio | Geissen, Violette
Sewage sludge application as a vehicle for microplastics in eastern Spanish agricultural soils Texte intégral
2020
van den Berg, Pim | Huerta-Lwanga, Esperanza | Corradini, Fabio | Geissen, Violette
Microplastic pollution is becoming a major challenge with the growing use of plastic. In recent years, research about microplastic pollution in the environment has become a field of study with increased interest, with ever expanding findings on sources, sinks and pathways of microplastics. Wastewater treatment plants effectively remove microplastics from wastewater and concentrate them in sewage sludge which is often used to fertilise agricultural fields. Despite this, quantification of microplastic pollution in agricultural fields through the application of sewage sludge is largely unknown. In light of this issue, four wastewater treatment plants and 16 agricultural fields (0–8 sewage sludge applications of 20–22 tons ha⁻¹ per application), located in the east of Spain, were sampled. Microplastics were extracted using a floatation and filtration method, making a distinction between light density microplastics (ρ < 1 g cm⁻³) and heavy density microplastics (ρ > 1 g cm⁻³). Sewage sludge, on average, had a light density plastic load of 18,000 ± 15,940 microplastics kg⁻¹ and a heavy density plastic load of 32,070 ± 19,080 microplastics kg⁻¹. Soils without addition of sewage sludge had an average light density plastic load of 930 ± 740 microplastics kg⁻¹ and a heavy density plastic load of 1100 ± 570 microplastics kg⁻¹. Soils with addition of sewage sludge had an average light density plastic load of 2130 ± 950 microplastics kg⁻¹ and a heavy density plastic load of 3060 ± 1680 microplastics kg⁻¹. On average, soils’ plastic loads increased by 280 light density microplastics kg⁻¹ and 430 heavy density microplastics kg⁻¹ with each successive application of sewage sludge, indicating that sewage sludge application results in accumulation of microplastics in agricultural soils.
Afficher plus [+] Moins [-]Sewage sludge application as a vehicle for microplastics in eastern Spanish agricultural soils Texte intégral
2020
van den Berg, Pim | Huerta-Lwanga, Esperanza | Corradini, Fabio | Geissen, Violette
Microplastic pollution is becoming a major challenge with the growing use of plastic. In recent years, research about microplastic pollution in the environment has become a field of study with increased interest, with ever expanding findings on sources, sinks and pathways of microplastics. Wastewater treatment plants effectively remove microplastics from wastewater and concentrate them in sewage sludge which is often used to fertilise agricultural fields. Despite this, quantification of microplastic pollution in agricultural fields through the application of sewage sludge is largely unknown. In light of this issue, four wastewater treatment plants and 16 agricultural fields (0–8 sewage sludge applications of 20–22 tons ha−1 per application), located in the east of Spain, were sampled. Microplastics were extracted using a floatation and filtration method, making a distinction between light density microplastics (ρ < 1 g cm−3) and heavy density microplastics (ρ > 1 g cm−3). Sewage sludge, on average, had a light density plastic load of 18,000 ± 15,940 microplastics kg−1 and a heavy density plastic load of 32,070 ± 19,080 microplastics kg−1. Soils without addition of sewage sludge had an average light density plastic load of 930 ± 740 microplastics kg−1 and a heavy density plastic load of 1100 ± 570 microplastics kg−1. Soils with addition of sewage sludge had an average light density plastic load of 2130 ± 950 microplastics kg−1 and a heavy density plastic load of 3060 ± 1680 microplastics kg−1. On average, soils’ plastic loads increased by 280 light density microplastics kg−1 and 430 heavy density microplastics kg−1 with each successive application of sewage sludge, indicating that sewage sludge application results in accumulation of microplastics in agricultural soils. Microplastics concentrations in soils are highly proportional to the number of sludge applications.
Afficher plus [+] Moins [-]Characterization and sources of volatile organic compounds (VOCs) and their related changes during ozone pollution days in 2016 in Beijing, China Texte intégral
2020
Liu, Yafei | Song, Mengdi | Liu, Xingang | Zhang, Yuepeng | Hui, Lirong | Kong, Liuwei | Zhang, Yingying | Zhang, Chen | Qu, Yu | An, Junling | Ma, Depeng | Tan, Qinwen | Feng, Miao
Concentrations of 99 volatile organic compounds (VOCs) were continuously measured online at an urban site in Beijing, China, in January, April, July, and October 2016. Characterization and sources of VOCs and their related changes during days with heavy ozone (O₃) pollution were analysed. The total observed concentration of VOCs (TVOCs) was 44.0 ± 28.9 ppbv. The VOC pollution level has decreased in Beijing but remains higher than in other Chinese cities. Alkanes comprised the highest proportion among seven major sampled VOC groups. The concentrations and sources of ambient VOCs showed obvious temporal variations. Six emission sources were identified by the positive matrix factorization (PMF), including biomass burning, coal combustion, gasoline vehicles, diesel vehicles, solvent usage, and biogenic + secondary emissions. The combustion source was the key control factor for VOC reduction in Beijing. From the potential source contribution function (PSCF) and concentration-weighted trajectory (CWT) model, Beijing, Tianjin, Hebei, Shanxi, Inner Mongolia, Shandong, and Henan were identified as major potential source regions of ambient VOCs. O₃ formation was sensitive to VOCs in Beijing according to the VOC/NOx ratio (ppbC/ppbv, 8:1 threshold). High- and low-O₃ days in July were identified, and high O₃ levels were due to both enhanced VOC emission levels and meteorological conditions favourable to the production of O₃. These findings provide evidence that the fuel combustion and regional transport have a great impact on concentrations and sources of VOCs in urban Beijing.
Afficher plus [+] Moins [-]