Affiner votre recherche
Résultats 141-150 de 640
Does a decade of soil organic fertilization promote copper and zinc bioavailability to an epi-endogeic earthworm?
2023
Laurent, Céline | Bravin, Matthieu | Blanchart, Eric | Crouzet, Olivier | Pelosi, Céline | Lamy, Isabelle
While long-term organic fertilizer (OF) applications tend to decrease copper (Cu) and zinc (Zn) availability in agricultural soils, earthworm bioturbation has been reported to have the opposite effect. Thus, the consequences of OF amendments in earthworm-inhabited soils on Cu and Zn bioavailability to earthworms are still under debate. Here, we assessed the effect of a decade of agronomically realistic OF applications on Cu and Zn availability in earthworm-inhabited soils and the consequences on Cu and Zn bioavailability to earthworms. An epi-endogeic species (Dichogaster saliens) was exposed in microcosms to three field-collected soils that had received either no, mineral, or organic fertilization for a decade. Dissolved organic matter (DOM) properties (i.e., concentration, aromaticity, and binding properties toward Cu), pH, and Cu and Zn availability (i.e., total concentration and free ionic activity) were determined in the solution of the soil containing earthworms. Cu and Zn bioavailability was assessed by measuring the net accumulation (ng) and concentration of Cu and Zn in earthworms (mg kg−1). Despite soil Cu and Zn contamination induced by a decade of OF applications, organic fertilization induced an increase in soil pH and DOM properties that drove the reduction of Cu and Zn availability in earthworm-inhabited soils, while bioturbation had little effect on soil pH, DOM properties, and Cu and Zn availability. Consistently, Cu and Zn bioavailability to earthworms did not increase with OF applications. From an ecotoxicological perspective, our results suggest that agronomically realistic applications of OF for a decade should not pose a risk to earthworms in terms of Cu and Zn net accumulation, but further studies have to be undertaken to understand consequent long-term toxicity after exposure.
Afficher plus [+] Moins [-]Main conclusions and perspectives from the collective scientific assessment of the effects of plant protection products on biodiversity and ecosystem services along the land-sea continuum in France and French overseas territories
2023
Pesce, Stéphane | Mamy, Laure | Sanchez, Wilfried | Amichot, Marcel | Artigas, Joan | Aviron, Stéphanie | Barthélémy, Carole | Beaudouin, Rémy | Bedos, Carole | Berard, Annette | Berny, Philippe | Bertrand, Cédric | Bertrand, Colette | Betoulle, Stéphane | Bureau-Point, Eve | Charles, Sandrine | Chaumot, Arnaud | Chauvel, Bruno | Coeurdassier, Michaël | Corio-Costet, Marie-France | Coutellec, Marie-Agnès | Crouzet, Olivier | Doussan, Isabelle | Fabure, Juliette | Fritsch, Clémentine | Gallai, Nicola | Gonzalez, Patrice | Gouy, Véronique | Hedde, Mickaël | Langlais, Alexandra | Le Bellec, Fabrice | Leboulanger, Christophe | Margoum, Christelle | Martin-Laurent, Fabrice | Mongruel, Rémi | Morin, Soizic | Mougin, Christian | Munaron, Dominique | Nelieu, Sylvie | Pelosi, Céline | Rault, Magali | Sabater, Sergi | Stachowski-Haberkorn, Sabine | Sucre, Eliott | Thomas, Marielle | Tournebize, Julien | Leenhardt, Sophie
Preservation of biodiversity and ecosystem services is critical for sustainable development and human well-being. However, an unprecedented erosion of biodiversity is observed and the use of plant protection products (PPP) has been identified as one of its main causes. In this context, at the request of the French Ministries responsible for the Environment, for Agriculture and for Research, a panel of 46 scientific experts ran a nearly 2-year-long (2020–2022) collective scientific assessment (CSA) of international scientific knowledge relating to the impacts of PPP on biodiversity and ecosystem services. The scope of this CSA covered the terrestrial, atmospheric, freshwater, and marine environments (with the exception of groundwater) in their continuity from the site of PPP application to the ocean, in France and French overseas territories, based on international knowledge produced on or transposable to this type of context (climate, PPP used, biodiversity present, etc.). Here, we provide a brief summary of the CSA's main conclusions, which were drawn from about 4500 international publications. Our analysis finds that PPP contaminate all environmental matrices, including biota, and cause direct and indirect ecotoxicological effects that unequivocally contribute to the decline of certain biological groups and alter certain ecosystem functions and services. Levers for action to limit PPP-driven pollution and effects on environmental compartments include local measures from plot to landscape scales and regulatory improvements. However, there are still significant gaps in knowledge regarding environmental contamination by PPPs and its effect on biodiversity and ecosystem functions and services. Perspectives and research needs are proposed to address these gaps.
Afficher plus [+] Moins [-]Distribution and accumulation of metals and metalloids in planktonic food webs of the Mediterranean Sea (MERITE-HIPPOCAMPE campaign)
2023
Chifflet, Sandrine | Briant, Nicolas | Tesán-Onrubia, Javier Angel | Zaaboub, Noureddine | Amri, Sirine | Radakovitch, Olivier | Bǎnaru, Daniela | Tedetti, Marc | Institut méditerranéen d'océanologie (MIO) ; Institut de Recherche pour le Développement (IRD)-Aix Marseille Université (AMU)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Toulon (UTLN)-Centre National de la Recherche Scientifique (CNRS) | Institut Français de Recherche pour l'Exploitation de la Mer (IFREMER) | Institut National des Sciences et Technologies de la Mer [Salammbô] (INSTM) | Laboratoire de recherche sur les transferts des radionucléides dans les écosystèmes aquatiques (IRSN/PSE-ENV/SRTE/LRTA) ; Service de recherche sur les transferts et les effets des radionucléides sur les écosystèmes (IRSN/PSE-ENV/SRTE) ; Institut de Radioprotection et de Sûreté Nucléaire (IRSN)-Institut de Radioprotection et de Sûreté Nucléaire (IRSN) | Centre européen de recherche et d'enseignement des géosciences de l'environnement (CEREGE) ; Institut de Recherche pour le Développement (IRD)-Aix Marseille Université (AMU)-Collège de France (CdF (institution))-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) | MERITE-HIPPOCAMPE project | ANR-19-CE34-0001,CONTAMPUMP,Plancton: pompe biologique de contaminants dans les écosystèmes marins (CONTAMPUMP)?(2019)
International audience | Particle-size classes (7 fractions from 0.8 to 2000 µm) were collected in the deep chlorophyll maximum along a Mediterranean transect including the northern coastal zone (bays of Toulon and Marseilles, France), the offshore zone (near the North Balearic Thermal Front), and the southern coastal zone (Gulf of Gabès, Tunisia). Concentrations of biotic metals and metalloids (As, Cd, Cr, Cu, Fe, Mn, Ni, Sb, V, Zn) bound to living or dead organisms and faecal pellets were assessed by phosphorus normalisation. Biotic metals and metalloids concentrations (except Cr, Mn, and V) were higher in the offshore zone than in the coastal zones. In addition, biotic Sb and V concentrations appeared to be affected by atmospheric deposition, and biotic Cr concentrations appeared to be affected by local anthropogenic inputs. Essential elements (Cd, Cu, Fe, Mn, Ni, V, Zn) were very likely controlled both by the metabolic activity of certain organisms (nanoeukaryotes, copepods) and trophic structure. In the northern coastal zone, biomagnification of essential elements was controlled by copepods activities. In the offshore zone, metals and metalloids were not biomagnified probably due to homeostasis regulatory processes in organisms. In the southern coastal zone, biomagnification of As, Cu, Cr, Sb could probably induce specific effects within the planktonic network.
Afficher plus [+] Moins [-]Distribution and accumulation of metals and metalloids in planktonic food webs of the Mediterranean Sea (MERITE-HIPPOCAMPE campaign)
2023
Chifflet, Sandrine | Briant, Nicolas | Tesán-Onrubia, Javier Angel | Zaaboub, Noureddine | Amri, Sirine | Radakovitch, Olivier | Bǎnaru, Daniela | Tedetti, Marc | Institut méditerranéen d'océanologie (MIO) ; Institut de Recherche pour le Développement (IRD)-Aix Marseille Université (AMU)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Toulon (UTLN)-Centre National de la Recherche Scientifique (CNRS) | Institut Français de Recherche pour l'Exploitation de la Mer (IFREMER) | Institut National des Sciences et Technologies de la Mer [Salammbô] (INSTM) | Laboratoire de recherche sur les transferts des radionucléides dans les écosystèmes aquatiques (IRSN/PSE-ENV/SRTE/LRTA) ; Service de recherche sur les transferts et les effets des radionucléides sur les écosystèmes (IRSN/PSE-ENV/SRTE) ; Institut de Radioprotection et de Sûreté Nucléaire (IRSN)-Institut de Radioprotection et de Sûreté Nucléaire (IRSN) | Centre Européen de Recherche et d'Enseignement des Géosciences de l'Environnement (CEREGE) ; Institut de Recherche pour le Développement (IRD)-Aix Marseille Université (AMU)-Collège de France (CdF (institution))-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) | The cross-disciplinary “Pollution & Contaminants” axis of the CNRS-INSU MISTRALS program (joint action of the MERMEX-MERITE and CHARMEX subprograms) | The Franco-Tunisian International Joint Laboratory (LMI) COSYS-Med | The MIO's “Action Sud” and “Transverse” incentive programs (CONTAM project) | MERITE-HIPPOCAMPE project | ANR-19-CE34-0001,CONTAMPUMP,Plancton: pompe biologique de contaminants dans les écosystèmes marins (CONTAMPUMP)?(2019)
International audience | Particle-size classes (7 fractions from 0.8 to 2000 µm) were collected in the deep chlorophyll maximum along a Mediterranean transect including the northern coastal zone (bays of Toulon and Marseilles, France), the offshore zone (near the North Balearic Thermal Front), and the southern coastal zone (Gulf of Gabès, Tunisia). Concentrations of biotic metals and metalloids (As, Cd, Cr, Cu, Fe, Mn, Ni, Sb, V, Zn) bound to living or dead organisms and faecal pellets were assessed by phosphorus normalisation. Biotic metals and metalloids concentrations (except Cr, Mn, and V) were higher in the offshore zone than in the coastal zones. In addition, biotic Sb and V concentrations appeared to be affected by atmospheric deposition, and biotic Cr concentrations appeared to be affected by local anthropogenic inputs. Essential elements (Cd, Cu, Fe, Mn, Ni, V, Zn) were very likely controlled both by the metabolic activity of certain organisms (nanoeukaryotes, copepods) and trophic structure. In the northern coastal zone, biomagnification of essential elements was controlled by copepods activities. In the offshore zone, metals and metalloids were not biomagnified probably due to homeostasis regulatory processes in organisms. In the southern coastal zone, biomagnification of As, Cu, Cr, Sb could probably induce specific effects within the planktonic network.
Afficher plus [+] Moins [-]Heatwaves, elevated temperatures, and a pesticide cause interactive effects on multi-trophic levels of a freshwater ecosystem
2023
Hermann, Markus | Peeters, Edwin T.H.M. | Van den Brink, Paul J.
Climate impacts of elevated temperatures and more severe and frequent weather extremes like heatwaves are globally becoming discernible on nature. While a mechanistic understanding is pivotal for ecosystem management, stressors like pesticides may interact with warming, leading to unpredictable effects on freshwater ecosystems. These multiple stressor studies are scarce and experimental designs often lack environmental realism. To investigate the multiple stressor effects, we conducted a microcosm experiment for 48 days comprising benthic macroinvertebrates, zooplankton, phytoplankton, macrophytes, and microbes. The fungicide carbendazim (100 μg/L) was investigated combined with temperature scenarios representing elevated temperatures (+4 °C) or heatwaves (+0 to +8 °C), both applied with similar energy input on a daily fluctuating ambient temperature (18 °C ± 1.5 °C), which served as control. Measurements showed the highest carbendazim dissipation in water under heatwaves followed by elevated and ambient temperatures. Average carbendazim concentrations were about 50% in water and 16% in sediment of the nominal concentration. In both heated cosms, zooplankton community dynamics revealed an unexpected shift from Rotifera to Cladocera and Copepoda nauplii, indicating variations in their thermal sensitivity, tolerance and resilience. Notably, warming and heatwaves shaped community responses similarly, suggesting heat intensity rather than distribution patterns determined the community structure. Heatwaves led to significant early and longer-lasting adverse effects that were exacerbated over time with Cladocera and Copepoda being most sensitive likely due to significant carbendazim interactions. Finally, a structural equation model demonstrated significant relationships between zooplankton and macrophytes and significantly negative carbendazim effects on zooplankton, whereas positive on macroinvertebrate abundances. The relationship between macroinvertebrate feeding and abundance was masked by significantly temperature-affected microbial leaf litter decomposition. Despite the thermal tolerance of zooplankton communities, our study highlights an increased pesticide threat under temperature extremes. More intense heatwaves are thus likely to cause significant alterations in community assemblages which will adversely affect ecosystem's processes and functions.
Afficher plus [+] Moins [-]Active and passive biomonitoring of trace elements, polycyclic aromatic hydrocarbons, and polychlorinated biphenyls in small Mediterranean harbours
2023
Castrec, Justine | Pillet, Marion | Receveur, Justine | Fontaine, Quentin | Le Floch, Stéphane | Churlaud, Carine | Lejeune, Pierre | Gobert, Sylvie | Thomas, Hélène | Marengo, Michel
peer reviewed | Quality of the marine environment in the Mediterranean port areas (QUAMPO) | Pollution particularly affects coastal ecosystems due to their proximity to anthropic sources. Among those en- vironments, harbours are subjected to marine traffic but also to accidental and chronic pollution. These areas are thus exposed to complex mixtures of contaminants such as trace elements and organic contaminants which can impact marine species, habitats, and ecosystem services. The monitoring of these compounds is thus a crucial issue for assessment of environmental health. In this context, the aim of the present work was to evaluate the chemical contamination of harbours in Corsica (NW Mediterranean) by measuring the bioaccumulation of trace elements, polycyclic aromatic hydrocarbons, and polychlorinated biphenyls in mussels, limpets, and sea cu- cumbers. The human health risks associated with seafood consumption were also assessed. Results reveal a relatively low contamination in the Corsican harbours studied compared to larger Mediterranean ports and suggest that the potential health risk for consumers eating seafood is low.
Afficher plus [+] Moins [-]Optimizing phosphorus fertigation management zones using electromagnetic induction, soil properties, and crop yield data under semi-arid conditions.
2023
Chtouki, Mohamed | Nguyen, Frédéric | Garré, Sarah | Oukarroum, Abdallah
peer reviewed | The impact of climate change on water resource availability and soil quality is more and more emphasized under the Mediterranean basin, mostly characterized by drought and extreme weather conditions. The present study aims to investigate how electromagnetic induction technique and soil mapping combined with crop yield data can be used to optimize phosphorus (P) use efficiency by chickpea crop under drip fertigation system. The study was carried out on a 2.5-ha agricultural plot and the agronomic experiments in two growing cycles of chickpea crop. Soil spatial variability was first assessed by the measurement of soil apparent electrical conductivity (ECa) using the CMD Mini-Explorer sensor, and then, soil physicochemical properties were evaluated based on an oriented soil sampling scheme to explore other soil spatial variabilities influencing chickpea yield and quality. Data from the first agronomic experiment were used in geostatistical, multiple linear regression (MLR), and fuzzy c-means unsupervised classification algorithms to properly identify P drip fertigation management zones (MZs). Results from the Person's correlation analysis revealed that chickpea grain yield was more influenced by soil ECa (r = - 0.56), pH (r = - 0.84), ECe (r = - 0.6), P content (r = 0.72), and calcium (Ca) content (r = - 0.83). The proposed MLR-based model to predict chickpea grain yield showed good performances with a normalized root mean square error (NRMSE) of 0.11% and a coefficient of determination (R2) equal to 0.69. The identified MZs were verified by the one-way variance analysis for the studied soil and plant attributes, revealing that the first MZ1 presents a high grain yield, high soil P content, and low ECa. The low fertility MZ2 located in the south part of the studied site presented a low chickpea grain yield due to the low P content and the high ECa. Moreover, the application of P-variable rate fertigation regimes in the second field experiment significantly improved P use efficiency, chickpea grain yield, seed quality, and farmer income by 18%, 12%, 9%, and 136 $/ha, respectively, as compared to the conventional drip fertigation practices. The approach proposed in this study can greatly contribute to optimizing agro-input use efficiency under drip fertigation system, thereby improving farmers' incomes, preserving the ecosystem, and ensuring sustainable cropping systems in the Mediterranean climate.
Afficher plus [+] Moins [-]Do soil and water conservation practices influence crop productivity and household welfare? Evidence from rural Nigeria
2023
Ogunniyi, Adebayo Isaiah; Omotayo, Abiodun Olusola; Olagunju, Kehinde Oluseyi; Motunrayo, Olyeyemi; Awotide, Bola Amoke; Mavrotas, George; Oladapo, Adeyemi
PR | IFPRI3; ISI; CRP3.2; 4 Transforming Agricultural and Rural Economies | Development Strategies and Governance (DSG); Transformation Strategies | CGIAR Research Program on Maize (MAIZE)
Afficher plus [+] Moins [-]Trace elements in migratory species arriving to Antarctica according to their migration range
2023
Padilha, J A | Carvalho, G O | Espejo, W | Pessôa, A R L | Cunha, L S T | Costa, E S | Torres, J P M | Lepoint, Gilles | Das, Krishna | Dorneles, Paulo Renato
peer reviewed | The levels of eighteen trace elements (TEs) were evaluated in association with stable isotopes (δ15N, δ34S, and δ13C) in feathers and eggs of five migratory species breeding on the Antarctic Peninsula to test the factors that influence their exposure to contaminants. The feathers of seabirds migrating to the Northern Hemisphere (South polar skua) have concentrations (mean ± SD, μg. g-1) of Li (1.71 ± 2.08) and Mg (1169.5 ± 366.8) one order of magnitude higher than southern migrants, such as Snowy sheathbill Li (0.01 ± 0.005) and Mg (499.6 ± 111.9). Feathers had significantly higher concentrations for 11 of a total of 18 metals measured compared to eggs. South polar skua have higher concentrations of all TEs in eggs compared to antarctic tern. Therefore, the present study showed that migration and trophic ecology (δ15N, δ13C, and δ34S) influence Fe, Mn, Cu, and Se concentrations in feathers of Antarctic seabirds. The concentrations of Cu, Mn, Rb, Zn, Pb, Cd, Cr are higher than previously reported, which may be due to increased local and global human activities.
Afficher plus [+] Moins [-]The arbuscular mycorrhizal fungus Rhizophagus irregularis uses the copper exporting ATPase RiCRD1 as a major strategy for copper detoxification
2023
Gómez-Gallego, Tamara | Molina-Luzón, Ma, Jesús | Conéjéro, Genevieve | Berthomieu, Pierre | Ferrol, Nuria | Department of Physiology and Biochemistry of Animal Nutrition, Estación Experimental del Zaidín, Spanish National Research Council (CSIC), Granada, Spain | Institut des Sciences des Plantes de Montpellier (IPSIM) ; Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Institut Agro Montpellier ; Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Université de Montpellier (UM) | CSIC, Estn Expt Zaidin, Dept Microbiol Suelo & Sistemas Simbiot, Granada, Spain
Arbuscular mycorrhizal (AM) fungi establish a mutualistic symbiosis with most land plants. AM fungi regulate plant copper (Cu) acquisition both in Cu deficient and polluted soils. Here, we report characterization of RiCRD1, a Rhizophagus irregularis gene putatively encoding a Cu transporting ATPase. Based on its sequence analysis, RiCRD1 was identified as a plasma membrane Cu (+) efflux protein of the P(1B1)-ATPase subfamily. As revealed by heterologous complementation assays in yeast, RiCRD1 encodes a functional protein capable of conferring increased tolerance against Cu. In the extraradical mycelium, RiCRD1 expression was highly up-regulated in response to high concentrations of Cu in the medium. Comparison of the expression patterns of different players of metal tolerance in R. irregularis under high Cu levels suggests that this fungus could mainly use a metal efflux based-strategy to cope with Cu toxicity. RiCRD1 was also expressed in the intraradical fungal structures and, more specifically, in the arbuscules, which suggests a role for RiCRD1 in Cu release from the fungus to the symbiotic interface. Overall, our results show that RiCRD1 encodes a protein which could have a pivotal dual role in Cu homeostasis in R. irregularis, playing a role in Cu detoxification in the extraradical mycelium and in Cu transfer to the apoplast of the symbiotic interface in the arbuscules.
Afficher plus [+] Moins [-]