Affiner votre recherche
Résultats 1411-1420 de 4,921
Selective accumulation of plastic debris at the breaking wave area of coastal waters
2019
Ho, Ngai Hei Ernest | Not, Christelle
Over the last decades, plastic debris has been identified and quantified in the marine environment. Coastal and riverine input have been recognized as sources of plastic debris, whereas oceanic gyres and sediments are understood to be sinks. However, we have a limited understanding of the fate of plastic debris in the nearshore environment. To investigate the movement and distribution of plastic debris in the nearshore environment, we collected samples at three distinct locations: below the high tide line, the turbulent zone created by the combination of breaking wave and backflush (defined as the boundary), and the outer nearshore. We estimated the abundance and physical characteristics (e.g. density, hardness, etc.) of macroplastic and microplastics. Four times and 15 times more macroplastics and microplastics are observed, respectively, at the boundary than in the outer nearshore waters, which suggests an accumulation driven by the physical properties of the plastic particles such as density, buoyancy and surface area. We further report that highly energetic conditions characteristic of the boundary area promote the long-term suspension and/or degradation of low density, highly buoyant or large surface area plastic debris, leading to their preferential accumulation at the boundary. Contrastingly, denser and low surface area plastic pieces were transported to the outer nearshore. These results emphasize the role of selective plastic movement at the nearshore driven by physical properties, but also by the combined effects of several hydrodynamics forces like wave action, wind or tide in the resuspension, as well as degradation and transport of plastic debris out of the nearshore environment.
Afficher plus [+] Moins [-]A source depletion model for vapor intrusion involving the influence of building characteristics
2019
Zhang, Ruihuan | Jiang, Lin | Zhong, Maosheng | DeVaull, George | Lahvis, Matthew A. | Ma, Jie | Zhou, Youya | Zheng, Rui | Fu, Quankai
If volatile organic compound (VOC)-contaminated soil exists underneath a building, vapors may migrate upwards and intrude into the interior air of the building. Most previous models used to simulate vapor intrusion (VI) were developed by assuming that the source was constant, although a few recent models, such as the Risk-Based Corrective Action (RBCA) Tool Kit (TK) model, have been developed to consider source depletion (SD). However, the RBCA TK model ignores the effects of building characteristics due to its assumption that the ground is not covered by the actual building it models, which leads to incorrect results since the presence of the building affects the SD. In this study, a SD model is developed based on the three processes of VI while considering the impact of key building parameters on SD. The proposed model (i.e., the SD model) still follows the law of mass conservation, and the sensitivity analysis shows that the soil-building pressure differential (dP) is an important building characteristic that affects SD. Taking trichloroethylene (TCE) for simulation in the case of a soil concentration below the saturation concentration, as the soil permeability decreases, the differences in the results between the SD model and RBCA TK model decrease; as the Peclet number decreases, the effect of the dP on the results of the SD model decreases. The new model only accounts for the migration of contaminants at the source of depletion; therefore, the model is more applicable for these contaminants, which are considered to have low-biodegradable characteristics. Furthermore, since the model emphasizes the impact of buildings on the source, it is applicable when there is a considerable building area above the source, such as large commercial buildings or residential communities with underground parking lots, which exist in most cities.
Afficher plus [+] Moins [-]Antimony oxidation and sorption behavior on birnessites with different properties (δ-MnO2 and triclinic birnessite)
2019
Sun, Qian | Cui, Pei-Xin | Liu, Cun | Peng, Shi-Meng | Alves, Marcelo Eduardo | Zhou, Dong-Mei | Shi, Zhen-Qing | Wang, Yurun
Birnessites are abundant naturally occurring minerals with high sorption and oxidation capacity that could therefore play an important role in antimony (Sb) migration and transformation. There are various types of birnessites in the environment. However, little is known about the similarities and differences in Sb oxidation and sorption on birnessites with different properties. In this study, the behavior of Sb oxidation and sorption on two contrasting birnessites (δ-MnO₂ and triclinic birnessite (TrBir)) were investigated via batch and kinetic experiments and various spectroscopic techniques. Our results showed that the reaction mechanisms between Sb and the two birnessites were similar. The edge sites of birnessites were responsible for Sb(III) oxidation. Mn(IV) was reduced to Mn(III) and Mn(II), bound with birnessites and released to the solution, respectively. Because of the rapid rate of electron transfer of adsorbed Sb(III) to birnessites, the only Sb species on δ-MnO₂ after the oxidation reaction was Sb(V). Sb(V) was adsorbed at the edge sites of birnessites by replacing the OH group of birnessites, forming corner-sharing complexes with birnessites. However, the Sb sorption and oxidation capacities of the two birnessites were significantly different. Poorly-crystallized δ-MnO₂ exhibited a much higher oxidation and sorption capacity than well-crystallized TrBir because the former had many more edge sites than the latter. This study reveals the general mechanism of the reaction between Sb and birnessite and indicates that birnessite with a high number of edge sites would exhibit a huge capacity in Sb oxidation and sorption.
Afficher plus [+] Moins [-]Bacterial diversity in typical abandoned multi-contaminated nonferrous metal(loid) tailings during natural attenuation
2019
Liu, Jian-li | Yao, Jun | Wang, Fei | Min, Ning | Gu, Ji-hai | Li, Zi-fu | Sunahara, Geoffrey | Duran, Robert | Solevic-Knudsen, Tatjana | Hudson-Edwards, K. A. (Karen A.) | Alakangas, Lena
Abandoned nonferrous metal(loid) tailings sites are anthropogenic, and represent unique and extreme ecological niches for microbial communities. Tailings contain elevated and toxic content of metal(loid)s that had negative effects on local human health and regional ecosystems. Microbial communities in these typical tailings undergoing natural attenuation are often very poorly examined. The diversity and inferred functions of bacterial communities were examined at seven nonferrous metal(loid) tailings sites in Guangxi (China), which were abandoned between 3 and 31 years ago. The acidity of the tailings sites rose over 31 years of site inactivity. Desulfurivibrio, which were always coupled with sulfur/sulfide oxidation to dissimilate the reduction of nitrate/nitrite, were specific in tailings with 3 years abandonment. However, genus beneficial to plant growth (Rhizobium), and iron/sulfur-oxidizing bacteria and metal(loid)-related genera (Acidiferrobacter and Acidithiobacillus) were specific within tailings abandoned for 23 years or more. The increased abundance of acid-generating iron/sulfur-oxidizing and metal(loid)-related bacteria and specific bacterial communities during the natural attenuation could provide new insights for understanding microbial ecosystem functioning in mine tailings. OTUs related to Sulfuriferula, Bacillus, Sulfurifustis, Gaiella, and Thiobacillus genera were the main contributors differentiating the bacterial communities between the different tailing sites. Multiple correlation analyses between bacterial communities and geochemical parameters indicated that pH, TOC, TN, As, Pb, and Cu were the main drivers influencing the bacterial community structures. PICRUSt functional exploration revealed that the main functions were related to DNA repair and recombination, important functions for bacterial adaptation to cope with the multi-contamination of tailings. Such information provides new insights to guide future metagenomic studies for the identification of key functions beyond metal-transformation/resistance. As well, our results offers novel outlooks for the management of bacterial communities during natural attenuation of multi-contaminated nonferrous metal(loid) tailings sites.
Afficher plus [+] Moins [-]Sorption and desorption of organic UV filters onto microplastics in single and multi-solute systems
2019
Ho, Wai-Kit | Leung, Kelvin Sze-Yin
Sorption studies of organic pollutants by microplastics (MPs) in single-solute systems are well established in the literature. However, actual aquatic environments always contain a mixture of contaminants. Prediction of the fate and biological effects of MPs-mediated chemical exposure requires a better understanding of sorption-desorption processes of multiple organic contaminants by MPs. In this study, the altered sorption and desorption behaviors of individual organic UV filters (BP-3 and 4-MBC) in the presence of cosolutes (BP-3, 4-MBC, EHMC and OC) on two types of MPs (LDPE and PS) were examined. In most cases, co-occurrence of other organic UV filters appeared to have an antagonistic effect on the sorption of primary solute, which was consistent with trends found in previous studies. Nevertheless, the sorption uptake of 4-MBC as primary solute on PS was enhanced in the presence of cosolute(s), arising presumably from solute multilayer formation caused by laterally attractive π-π interactions between adsorbed cosolute(s) and 4-MBC molecules. Such formation of multilayer sorption in multi-solute systems depends on the solute hydrophobicity and concentration as well as inherent sorptivity of MPs. Our further desorption experiments revealed that the bioaccessibility of primary solute was significantly elevated with cosolutes, even though competitive sorption was observed under the same experimental conditions. These findings supplement the current knowledge on sorption mechanisms and interactions of multiple organic contaminants on MPs, which are critical for a comprehensive environmental risk assessment of both MPs and hazardous anthropogenic contaminants in natural environments.
Afficher plus [+] Moins [-]Urban vegetation and particle air pollution: Experimental campaigns in a traffic hotspot
2019
Gómez-Moreno, F.J. | Artíñano, B. | Ramiro, EDíaz | Barreiro, M. | Núñez, L. | Coz, E. | Dimitroulopoulou, C. | Vardoulakis, S. | Yagüe, C. | Maqueda, G. | Sastre, M. | Román-Cascón, C. | Santamaría, J.M. | Borge, R.
This work presents the main results of two experimental campaigns carried out in summer and winter seasons in a complex pollution hotspot near a large park, El Retiro, in Madrid (Spain). These campaigns were aimed at understanding the microscale spatio-temporal variation of ambient concentration levels in areas with high pollution values to obtain data to validate models on the effect of urban trees on particulate matter concentrations.Two different measuring approaches have been used. The first one was static, with instruments continuously characterizing the meteorological variables and the particulate matter concentration outside and inside the park. During the summer campaign, the particulate matter concentration was clearly influenced by a Saharan dust outbreak during the period 23 June to 10 July 2016, when most of the particulate matter was in the fraction PM₂.₅₋₁₀. During the winter campaign, the mass concentrations were related to the meteorological conditions and the high atmospheric stability.The second approach was a dynamic case with mobile measurements by portable instruments. During the summer campaign, a DustTrak instrument was used to measure PM₁₀ and PM₂.₅ in different transects close to and inside the park at different distances from the traffic lane. It was observed a decrease in the concentrations up to 25% at 20 m and 50% at 200 m. High PM₁₀ values were linked to dust resuspension caused by recreational activities and to a Saharan dust outbreak. The highest PM values were measured at the Independencia square, an area with many bus stops and high traffic density. During the winter campaign, three microaethalometers were used for Black Carbon measurement. Both pollutants also showed a reduction in their concentrations when moving towards inside the park. For PM₁₀ and PM₂.₅, reductions up to 50% were observed, while for BC this reduction was smaller, about 20%.
Afficher plus [+] Moins [-]Physiological and biochemical responses of Microcystis aeruginosa to phosphine
2019
Sheng, Hong | Niu, Xiaojun | Song, Qi | Li, Yankun | Zhang, Runyuan | Zou, Dinghui | Lai, Senchao | Yang, Zhiquan | Tang, Zhenghua | Zhou, Shaoqi
The frequent outbreaks of cyanobacteria bloom are often accompanied by the generation and release of reduced phosphorus species (e.g., phosphine), which raises interesting questions regarding their potential algae-related effects. To clarify the physiological and biochemical responses of cyanobacteria to phosphine, Microcystis aeruginosa was treated with different concentrations of phosphine. Net photosynthetic rate, total antioxidant capacity (T-AOC), catalase (CAT) activity, and the concentrations of chlorophyll a, carotenoid and total protein were investigated and scanning electron microscopy (SEM) was conducted to elucidate the physiological and biochemical responses of M. aeruginosa to phosphine. The results showed that phosphine was beneficial to the growth of algal cells after M. aeruginosa acclimatized to the treatment of phosphine, and treatment with 2.48 × 10⁻² mg/L phosphine had a greater positive effect on the growth and reproduction of M. aeruginosa than 7.51 × 10⁻³ mg/L phosphine, in which most algal cells were smooth and flat on day 16. Treatment with the high concentration of phosphine (7.51 × 10⁻² mg/L) for 16 d reduced T-AOC, CAT activity, net photosynthetic rate, and the concentrations of chlorophyll a, carotenoid and total protein of M. aeruginosa to the minimums, resulting in the lysis and death of M. aeruginosa cells, which indicates phosphine has a toxic effect on the growth of algal cells. However, the high concentration of phosphine (7.51 × 10⁻² mg/L) had a greater positive effect on the growth of M. aeruginosa cells than the lower two (7.51 × 10⁻³ mg/L and 2.48 × 10⁻² mg/L) from 3 d to 12 d. Our findings provide insight into how phosphine potentially affects the growth of M. aeruginosa cells and the important roles of elevated phosphine on the outbreak of cyanobacteria bloom.
Afficher plus [+] Moins [-]Cardiovascular endothelial inflammation by chronic coexposure to lead (Pb) and polycyclic aromatic hydrocarbons from preschool children in an e-waste recycling area
2019
Zheng, Xiangbin | Huo, Xia | Zhang, Yu | Wang, Qihua | Zhang, Yuling | Xu, Xijin
Lead (Pb) and polycyclic aromatic hydrocarbon (PAH) exposure is positively associated with cardiovascular disease (CVD), and the possible potential mechanism may be caused by damage to the endothelium by modulation of inflammatory processes. No comprehensive research shows co-exposure of Pb and PAH on cardiovascular endothelial inflammation in electronic waste (e-waste) exposed populations. Given this, the aim of this study is to provide evidence for a relationship between Pb and PAH co-exposure and cardiovascular endothelial inflammation, in an e-waste-exposed population, to delineate the link between a potential mechanism for CVD and environmental exposure. We recruited 203 preschool children (3–7 years) were enrolled from Guiyu (e-waste-exposed group, n = 105) and Haojiang (reference group, n = 98). Blood Pb levels and urinary PAH metabolites were measured. Percentages of T cells, CD4⁺ T cells and CD8⁺ T cells, complete blood counts, endothelial inflammation biomarker (serum S100A8/A9), and other inflammatory biomarkers [serum interleukin (IL)-6, IL-12p70, gamma interferon-inducible protein 10 (IP-10)] levels were evaluated. Blood Pb, total urinary hydroxylated PAH (ΣOHPAH), total hydroxynaphthalene (ΣOHNap) and total hydroxyfluorene (ΣOHFlu) levels, S100A8/A9, IL-6, IL-12p70 and IP-10 concentrations, absolute counts of monocytes, neutrophils, and leukocytes, as well as CD4⁺ T cell percentages were significantly higher in exposed children. Elevated blood Pb, urinary 2-hydroxynaphthalene (2-OHNap) and ΣOHFlu levels were associated with higher levels of IL-6, IL-12p70, IP-10, CD4⁺ T cell percentages, neutrophil and monocyte counts. Mediator models indicated that neutrophils exert the significant mediation effect on the relationship between blood Pb levels and S100A8/A9. IL-6 exerts a significant mediation effect on the relationship between blood Pb levels and IP-10, as well as the relationship between urinary ΣOHFlu levels and IP-10. Our results indicate that children with elevated exposure levels of Pb and PAHs have exacerbated vascular endothelial inflammation, which may indicate future CVD risk in e-waste recycling areas.
Afficher plus [+] Moins [-]Temporal dynamics of urban heat island correlated with the socio-economic development over the past half-century in Seoul, Korea
2019
Hong, Je-Woo | Hong, Jinkyu | Kwon, Eilhann E. | Yoon, D.K.
Urban heat island (UHI), an iconic consequence of anthropogenic activities and climate condition, affects air pollution, energy use, and health. Therefore, better understanding of the temporal dynamics of UHI is required for sustainable urban planning to mitigate air pollution under a changing climate. Here, we present the evolution of UHI intensity (UHIi) and its controlling factors in the Seoul metropolitan area, Korea, over the last 56 years (1962–2017), which has experienced unique compressed economic growth and urban transformation under monsoon climate. The analysis demonstrated an inverted U-shape long-term variation of UHIi with the progress of urban transformation and economic climate which has not been reported in Asian cities before. Meanwhile, short-term variations in UHIi are related to both diurnal temperature range and duration after rainfall event unlike previous studies, and the UHIi was exacerbated by heat waves. Our findings suggest that the UHIi will exhibit different temporal dynamics with future changes in the monsoon climate, and heat waves in the urban area will be reinforced if current rapid urbanization continues without a shift toward sustainable and equitable development. Asian cities that are likely to face the similar urbanization trajectory and the implications are that urban (re)development strategy considers changes in rainfall magnitude and timing due to monsoon system variation under changing climate and plans to mitigate synergy between heat wave and UHI in this area.
Afficher plus [+] Moins [-]Enantiomeric environmental behavior, oxidative stress and toxin release of harmful cyanobacteria Microcystis aeruginosa in response to napropamide and acetochlor
2019
Xie, Jingqian | Zhao, Lu | Liu, Kai | Liu, Weiping
Harmful algal blooms have emerged as a worldwide issue. After concentrations of herbicides entering water, herbicides in water may pose ecological effects on them. The present study investigates the toxicity and environmental behavior of the herbicides, napropamide and acetochlor as enantiomers and as racemates on Microcystis aeruginosa which is the main specie known to produce hepatotoxins. S-napropamide/acetochlor are degraded faster than their corresponding isomer R-napropamide/acetochlor, with the latter more prone to accumulate in algal cells. Moreover, all the enantiomers did not undergo measurable racemization in the medium and algal cells. S-napropamide/acetochlor exhibited much higher toxicity than R-napropamide/acetochlor, with the S-enantiomer inducing a much greater production of antioxidant defense enzymes (superoxide dismutase (SOD) and malondialdehyde (MDA)) and microcystins (MC). SOD and MC increased after treatment with the herbicides and these increases were dependent on the exposure time, whereas MDA showed no apparent change. The information provided in this work will be useful for understanding the toxicity mechanism and environmental behaviors of different amide herbicides (napropamide and acetochlor) in aquatic environments at the enantiomeric level. Additionally, analysis of chiral herbicides in aquatic system needs more attention to aide in the environmental assessment of chiral herbicides.
Afficher plus [+] Moins [-]