Affiner votre recherche
Résultats 1421-1430 de 1,953
Oxidative stress and lipid peroxidation in the earthworm Eisenia fetida induced by low doses of fomesafen
2013
Zhang, Qingming | Zhu, Lusheng | Wang, Jun | Xie, Hui | Wang, Jinhua | Han, Yingnan | Yang, Jinhui
Formesafen is a diphenyl ether herbicide that has adverse effects on non-target animals. However, knowledge about the effect of fomesafen on the antioxidant defense system in earthworms is vague. Thus, it is essential to investigate the effects of fomesafen on the antioxidant defense system in earthworms as a precautionary method. In the present study, earthworms (Eisenia fetida) were exposed to artificial soil treated with a range of concentrations of fomesafen (0, 10, 100, and 500 μg kg⁻¹) and were collected on the 3rd, 7th, 14th, 21st, and 28th days of exposure. Subsequently, the antioxidant enzyme activities (superoxide dismutase (SOD); catalase (CAT); and guaiacol peroxidase (POD)), reactive oxygen species (ROS) level, and malondialdehyde (MDA) content due to fomesafen treatment were examined in earthworms. Compared with the control, the SOD activity increased on the third and seventh days but decreased on the 14th day due to treatment with 100 and 500 μg kg⁻¹ of fomesafen. The activities of CAT and POD increased significantly on the third, seventh, and 14th days of exposure. In addition, the ROS level was significantly enhanced throughout the entire experimental period and showed a statistically dose-dependent relationship on the seventh and 14th days. The MDA content markedly increased on the seventh day of exposure; however, obvious changes were not detected at other exposure period. Low doses of fomesafen (≤500 μg kg⁻¹) may result in oxidative damage and lipid peroxidation in E. fetida by inducing the generation of ROS at short exposure periods (14 days). However, the adverse effects of fomesafen gradually disappear as the cooperation of antioxidant enzymes and exposure time are prolonged. This result may be helpful for further studies on the toxicological mechanisms of fomesafen to earthworms.
Afficher plus [+] Moins [-]Cascade utilization of water chestnut: recovery of phenolics, phosphorus, and sugars
2013
Akao, Satoshi | Maeda, Koutaro | Hosoi, Yoshihiko | Nagare, Hideaki | Maeda, Morihiro | Fujiwara, Taku
Overgrowth of aquatic plants, such as water chestnut, has been reported as a regional problem in various areas. We proposed cascade utilization of water chestnut through the recovery of phenolics, phosphorus, and sugars. Phenolics were extracted using 50 g (wet weight) of biomass with 300 mL of acetone, methanol, or hot water, and the yields of total phenolics were 80.2, 56.2, and 49.7 mg g(-1) dry weight of native biomass, respectively. The rate of eluted phosphorus in the phenolic extraction step was 8.6, 14.8, and 45.3 % of that in the native biomass, respectively, indicating that the use of polar organic solvents suppressed phosphorus elution at the phenolic extraction step. Extraction of phosphorus following the phenolic extraction was combined with alkaline pretreatment (1 % NaOH solution) of biomass for saccharification; 64.1 and 51.0 % of phosphorus in the native biomass were extracted using acetone and methanol for the phenolic extraction, respectively. Saccharification following the alkaline pretreatment showed that the glucose recovery rates were significantly increased (p < 0.05) with the phenolic extraction step compared to alkaline pretreatment alone. This finding indicates that extraction of phenolics not only provides another useful material but also facilitates enzymatic saccharification.
Afficher plus [+] Moins [-]Assessment of the ecological security of immobilized enzyme remediation process with biological indicators of soil health
2013
Zhang, Ying | Dong, Xiaonan | Zhao, Jiang | Cao, Bo | Ge, Shijie | Hu, Miao
This study used the enzymes extracted from an atrazine-degrading strain, Arthrobacter sp. DNS10, which had been immobilized by sodium alginate to rehabilitate atrazine-polluted soil. Meanwhile, a range of biological indices were selected to assess the ecological health of contaminated soils and the ecological security of this bioremediation method. The results showed that there was no atrazine detected in soil samples after 28 days in EN + AT (the soil containing atrazine and immobilized enzyme) treatment. However, the residual atrazine concentration of the sample in AT (the soil containing atrazine only) treatment was about 5.02 ± 0.93 mg kg(-1). These results suggest that the immobilized enzyme exhibits an excellent ability in atrazine degradation. Furthermore, the immobilized enzyme could relieve soil microbial biomass carbon and soil microbial respiration intensity to 772.33 ± 34.93 mg C kg(-1) and 5.01 ± 0.17 mg CO2 g(-1) soil h(-1), respectively. The results of the polymerase chain reaction-degeneration gradient gel electrophoresis experiment indicated that the immobilized enzyme also could make the Shannon-Wiener index and evenness index of the soil sample increase from 1.02 and 0.74 to 1.51 and 0.84, respectively. These results indicated that the immobilized enzymes not only could relieve the impact from atrazine on the soil, but also revealed that the immobilized enzymes did no significant harm on the soil ecological health.
Afficher plus [+] Moins [-]Scavenging of BHCs and DDTs from soil by thermal desorption and solvent washing
2013
Gao, Yan Fei | Yang, Hong | Zhan, Xin Hua | Zhou, Li Xiang
Intensive remediation of abandoned former organochlorine pesticides (OCPs) manufacturing areas is necessary because the central and surrounding soils contaminated by OCPs are harmful to crop production and food safety. Organochlorine and its residues are persistent in environments and difficult to remove from contaminated soils due to their low solubility and higher sorption to the soils. We performed a comprehensive study on the remediation of OCPs-contaminated soils using thermal desorption technique and solvent washing approaches. The tested soil was thermally treated at 225, 325, 400, and 500 °C for 10, 20, 30, 45, 60, and 90 min, respectively. In addition, we tested soil washing with several organic solvents including n-alcohols and surfactants. The optimal ratio of soil/solvent was tested, and the recycling of used ethanol was investigated. Finally, activities of polyphenol oxidase (PPO), urease (URE), alkaline phosphatase, acid phosphatase (ACP), and invertase (INV) were assayed in the treated soils. The tested soil was thermally treated at 500 °C for 30 min, and the concentration of contaminants in soil was decreased from 3,115.77 to 0.33 mg kg⁻¹. The thermal desorption in soil was governed by the first-order kinetics model. For the chemical washing experiment, ethanol showed a higher efficiency than any other solvent. Using a 1:20 ratio of soil/solvent, the maximum removal of OCPs was achieved within 15 min. Under this condition, approximately 87 % of OCPs was removed from the soils. More than 90 % of ethanol in the spent wash fluid could be recovered. Activities of some enzymes in soils were increased after ethanol treatment. But ALP, ACP, and INV activities were decreased and PPO and URE showed slightly higher activities following remediation by thermal treatment. Both heating temperature and time were the key factors for thermal desorption of OCPs. The n-alcohol solvent showed higher removal of OCPs from soils than surfactants. The highly efficient removal of OCPs from soil was achieved using ethanol. More than 90 % of ethanol could be recovered and be reused following distillation. This study provides a cost-effective and highly efficient way to remediate the OCPs-contaminated soils.
Afficher plus [+] Moins [-]Seizure modeling of Pb(II) and Cd(II) from aqueous solution by chemically modified sugarcane bagasse fly ash: isotherms, kinetics, and column study
2013
Shah, Bhavna | Mistry, Chirag | Shah, Ajay
Heavy metal pollution is a common environmental problem all over the world. The purpose of the research is to examine the applicability of bagasse fly ash (BFA)—an agricultural waste of sugar industry used for the synthesis of zeolitic material. The zeolitic material are used for the uptake of Pb(II) and Cd(II) heavy metal. Bagasse fly ash is used as a native material for the synthesis of zeolitic materials by conventional hydrothermal treatment without (conventional zeolitic bagasse fly ash (CZBFA)) and with electrolyte (conventional zeolitic bagasse fly ash in electrolyte media (ECZBFA)) media. Heavy metal ions Pb(II) and Cd(II) were successfully seized from aqueous media using these synthesized zeolitic materials. In this study, the zeolitic materials were well characterized by different instrumental methods such as Brunauer–Emmett–Teller, XRF, Fourier transform infrared spectroscopy, powder X-ray diffraction, and scanning electron microscopic microphotographs. The presence of analcime, phillipsite, and zeolite P in adsorbents confirms successful conversion of native BFA into zeolitic materials. Seizure modeling of Pb(II) and Cd(II) was achieved by batch sorption experiments, isotherms, and kinetic studies. These data were used to compare and evaluate the zeolitic materials as potential sorbents for the uptake of heavy metal ions from an aqueous media. The Langmuir isotherm correlation coefficient parameters best fit the equilibrium data which indicate the physical sorption. Pseudo-second-order and intra-particle diffusion model matches best which indicates that the rate of sorption was controlled by film diffusion. The column studies were performed for the practical function of sorbents, and breakthrough curves were obtained, which revealed higher sorption capacity as compared to batch method. Synthesized zeolitic material (CZBFA and ECZBFA), a low-cost sorbent, was proven as potential sorbent for the uptake of Pb(II) and Cd(II) heavy metal ions.
Afficher plus [+] Moins [-]A review of membrane fouling in municipal secondary effluent reclamation
2013
Ke, Xu | Hongqiang, Ren | Lili, Ding | Jinju, Geng | Tingting, Zhang
Reclamation of municipal secondary effluent for non-potable purposes is considered vital in alleviating the demand for existing limited water supplies while helping to protect remaining water sources from being polluted. In recent decades, reverse osmosis and nanofiltration membrane technologies have become increasingly attractive for reclamation of municipal secondary effluent because they are highly efficient, easy to operate, and economical. However, membrane fouling is a major obstacle in the development of membrane technology in municipal secondary effluent reclamation. This paper reviews three types of membrane fouling in municipal secondary effluent reclamation, namely, effluent organic matter (EfOM) membrane fouling, microbial membrane fouling, and inorganic membrane fouling, as well as their correlation. Membrane fouling by EfOM and microbes are found to be severe, and they are significantly correlated. Most previous studies conducted laboratory-scale experiments of membrane fouling with model organic matters and bacteria, but these model organic matters and bacteria might still be unrepresentative. More studies on membrane fouling in municipal secondary effluent reclamation with actual wastewater are essential.
Afficher plus [+] Moins [-]Assessment of Arthrobacter viscosus as reactive medium for forming permeable reactive biobarrier applied to PAHs remediation
2013
Ferreira, L. | Cobas, M. | Tavares, T. | Sanromán, M. A. | Pazos, M.
Polycyclic aromatic hydrocarbons (PAHs) are significant environmental contaminants as they are present naturally as well as anthropogenically in soil, air and water. In spite of their low solubility, PAHs are spread to the environment, and they are present in surface water, industrial effluent or groundwater. Amongst all remediation technologies for treating groundwater contaminated with PAHs, the use of a permeable reactive biobarrier (PRBB) appears to be the most cost-effective, energy efficient, and environmentally sound approach. In this technology, the microorganisms are used as reactive medium to degrade or stabilize the contaminants. The main limits of this approach are that the microorganisms or consortium used for forming the PRBB should show adequate characteristics. They must be retained in the barrier-forming biofilm, and they should also have degradative ability for the target pollutants. The aim of the present work is to evaluate the viability of Arthrobacter viscosus as bioreactive medium for forming PRBB. Initially, the ability of A. viscosus to remove PAHs, benzo[a]anthracene 100 μM and phenanthrene 100 μM was evaluated operating in a batch bench-scale bioreactor. In both cases, total benzo[a]anthracene and phenanthrene removals were obtained after 7 and 3 days, respectively. Furthermore, the viability of the microorganisms was evaluated in the presence of chromium in a continuous mode. As a final point, the adhesion of A. viscosus to sepiolite forming a bioreactive material to build PRBB was demonstrated. In view of the attained results, it can be concluded that A. viscosus could be a suitable microorganism to form a bioreactive medium for PAHs remediation.
Afficher plus [+] Moins [-]Toxicological responses of earthworm (Eisenia fetida) exposed to metal-contaminated soils
2013
Zheng, Kai | Liu, Zhengtao | Li, Yajie | Cui, YiBin | Li, Mei
The aim of this study was to evaluate the toxicological responses of earthworm (Eisenia fetida) induced by field-contaminated, metal-polluted soils. Biochemical responses and DNA damage of earthworm exposed to two multi-metal-contaminated soils in a steel industry park and a natural reference soil in Zijin Mountain for 2, 7, 14, and 28 days were studied. Results showed that three enzyme activities, including superoxide dismutase (SOD), acetylcholinesterase (AChE), and cellulase, in earthworm in metal-contaminated soils were significantly different from those of the reference soil. Cellulase and AChE were more sensitive than SOD to soil contamination. The Olive tail moment of the comet assay after 2-day exposure increased 56.5 and 552.0 % in two contaminated soils, respectively, compared to the reference soil. Our findings show that cellulase and DNA damage levels can be used as potential biomarkers for exposure of earthworm to metal-polluted soils.
Afficher plus [+] Moins [-]Visible-light-induced photocatalytic reduction of Cr(VI) with coupled Bi₂O ₃/TiO ₂ photocatalyst and the synergistic bisphenol A oxidation
2013
Yang, Juan | Dai, Jun | Li, Jiantong
Coupled Bi₂O₃/TiO₂ photocatalysts were fabricated by sol–gel and hydrothermal methods and characterized using various spectroscopy techniques. Photocatalytic reduction of Cr(VI) in aqueous solution, together with the synergistic effect of photodegradation of bisphenol A (BPA), was investigated using these coupled Bi₂O₃/TiO₂ under visible-light irradiation. Coupling of Bi₂O₃ inhibited the phase transformation from anatase to rutile and extended absorption region to visible light. Bi ions did not enter TiO₂ lattice and were more likely to bond with oxygen atoms to form Bi₂O₃ on the surface of TiO₂. Photovoltage signals in visible range revealed the effective interfacial charge transfer between Bi₂O₃ and TiO₂. Two percent Bi₂O₃/TiO₂ exhibited the highest photocatalytic activity of visible-light-induced reduction of Cr(VI). The addition of BPA effectively increased the photocatalytic reduction of Cr(VI). Simultaneously, the presence of Cr(VI) promoted the degradation of BPA, which was demonstrated by the investigation of TOC removal yield and generated intermediates. A possible mechanism of photocatalytic reduction of Cr(VI) and degradation of BPA in Bi₂O₃/TiO₂ system was proposed. The synergistic effect, observed between reduction of Cr(VI) and degradation of BPA, provides beneficial method for environmental remediation and purification of the complex wastewater.
Afficher plus [+] Moins [-]Persistent organic pollutants in the atmosphere from urban and industrial environments in the Rhine Valley: PCBs, PCDD/Fs
2013
Guéguen, Florence | Stille, Peter | Millet, Maurice
Polychlorinated biphenyls (PCBs) and polychlorinated dibenzodioxin and furan (PCDD/F) concentrations in the atmosphere were analysed using passive air samplers (PAS) close to the Rhine River between France and Germany. Collectors were placed in industrial, urban, rural and remote areas (Vosges Mountains) between March 2009 and August 2010, and the mean PCB concentrations (sum of 22 congeners) were 3.3, 3.9, 4.1 and 1.4 ng PAS⁻¹ day⁻¹, respectively. Two events during the sampling period were observed in April 2009 and February–March 2010 with the highest PCB concentrations found in the industrial area (19.6 ng PAS⁻¹ day⁻¹). PCDD/F level were measured during these periods, and the maximum concentration observed was from 37.5 fg WHO PAS⁻¹ day⁻¹
Afficher plus [+] Moins [-]