Affiner votre recherche
Résultats 1431-1440 de 7,921
Co-occurring microorganisms regulate the succession of cyanobacterial harmful algal blooms
2021
Wang, Kai | Mou, Xiaozhen | Cao, Huansheng | Struewing, Ian | Allen, Joel | Lu, Jingrang
Cyanobacterial harmful algal blooms (CyanoHABs) have been found to transmit from N₂ fixer-dominated to non-N₂ fixer-dominated in many freshwater environments when the supply of N decreases. To elucidate the mechanisms underlying such “counter-intuitive” CyanoHAB species succession, metatranscriptomes (biotic data) and water quality-related variables (abiotic data) were analyzed weekly during a bloom season in Harsha Lake, a multipurpose lake that serves as a drinking water source and recreational ground. Our results showed that CyanoHABs in Harsha Lake started with N₂-fixing Anabaena in June (ANA stage) when N was high, and transitioned to non-N₂-fixing Microcystis- and Planktothrix-dominated in July (MIC-PLA stage) when N became limited (low TN/TP). Meanwhile, the concentrations of cyanotoxins, i.e., microcystins were significantly higher in the MIC-PLA stage. Water quality results revealed that N species (i.e., TN, TN/TP) and water temperature were significantly correlated with cyanobacterial biomass. Expression levels of several C- and N-processing-related cyanobacterial genes were highly predictive of the biomass of their species. More importantly, the biomasses of Microcystis and Planktothrix were also significantly associated with expressions of microbial genes (mostly from heterotrophic bacteria) related to processing organic substrates (alkaline phosphatase, peptidase, carbohydrate-active enzymes) and cyanophage genes. Collectively, our results suggest that besides environmental conditions and inherent traits of specific cyanobacterial species, the development and succession of CyanoHABs are regulated by co-occurring microorganisms. Specifically, the co-occurring microorganisms can alleviate the nutrient limitation of cyanobacteria by remineralizing organic compounds.
Afficher plus [+] Moins [-]Level, distribution and sources of plutonium in the northeast and north China
2021
Zhang, Weichao | Hou, Xiaolin | Zhang, Haitao | Wang, Yanyun | Dang, Haijun | Xing, Shan | Chen, Ning
Concentrations of ²³⁹Pu and ²⁴⁰Pu in 163 surface soil samples and five soil cores collected from the northeast and north China were analyzed using the radiochemical separation combined with inductively coupled plasma mass spectrometry measurement. The average ²⁴⁰Pu/²³⁹Pu atomic ratios (0.185 ± 0.018) for all surface soil samples indicated that the global fallout is the major source of plutonium in the studied region. The ²³⁹,²⁴⁰Pu concentrations of the surface soil ranged from 0.002 mBq/g to 4.82 mBq/g, lying in the range of the reported results in the areas with similar latitude, except for a few samples. The distribution of ²³⁹,²⁴⁰Pu in this region is controlled by the deposition of plutonium in the atmosphere and its preservation in the soil, which were affects by multi-factors such as topography, climate, utilization of the land and vegetation coverage. The analytical results could be used as the baseline data for the assessment of the impact of nuclear activities in the past and the future.
Afficher plus [+] Moins [-]Polycyclic aromatic hydrocarbons in sediments and fish species from the White Nile, East Africa: Bioaccumulation potential, source apportionment, ecological and health risk assessment
2021
Abayi, Juma John Moses | Gore, Christopher Tombe | Nagawa, Christine | Bandowe, Benjamin AMusa | Matovu, Henry | Mubiru, Edward | Ngeno, Emily Chelangat | Odongo, Silver | Sillanpää, Mika | Ssebugere, Patrick
The impact of oil exploration and production activities on the environment of sub-saharan African countries is not well studied. This study aimed at determining concentrations, sources, and bioaccumulation of 13 polycyclic aromatic hydrocarbons (PAHs) in sediments and fish from the White Nile near Melut oil fields, South Sudan. The study also assessed the ecological and human health risk associated with PAHs in this aquatic system. Total (∑₁₃) PAH concentrations ranged from 566 to 674 ng g⁻¹dry weight (dw) in sediments, while those in fish were 191–1143 ng g⁻¹ wet weight (ww). ∑₁₃PAH concentrations were significantly higher in C. gariepinus than in other fish species. Low molecular weight PAHs (LPAHs) dominated the profile of PAHs in sediments (constituted 95% of ∑₁₃PAHs) and fish (97% of ∑₁₃PAHs). Compared to Sediment Quality Guidelines of the United States Oceanic and Atmospheric Administration, the levels of LPAHs in this study were all above the threshold effect limits, but below the probable effect level, while those of high molecular weight PAHs (HPAHs) were all below the lowest effect levels. The carcinogenic potency equivalent concentrations of PAHs in L. niloticus and C. gariepinus were above the US EPA screening level; suggesting consumption of these species could adversely affect human health. Biota-sediment accumulation factor values (range: 0.006–3.816 g OC g⁻¹ lipid) for PAHs showed high bioaccumulation of LPAHs in fish muscle, and that bioaccumulation decreased with increase in hydrophobicity of the compounds. This is possibly because LPAHs have higher aqueous solubilities which increases their bioavailability through water-gill transfers compared to HPAHs. Profiles of PAHs in the White Nile environment indicate predominant contribution from petrogenic sources, which could be attributed to presence of crude oil reservoirs and oil production operations. More research into the levels of other environmental pollutants in the oil-rich area is recommended.
Afficher plus [+] Moins [-]Enhanced electrokinetic remediation of heavy metals contaminated soil by biodegradable complexing agents
2021
Wang, Yuchen | Han, Zijian | Li, Ang | Cui, Chongwei
In this study, an electrokinetic technique for remediation of Pb²⁺, Zn²⁺ and Cu²⁺ contaminated soil was explored using sodium alginate (SA) and chitosan (CTS) as promising biodegradable complexing agents. The highest Cu²⁺ (95.69%) and Zn²⁺ (95.05%) removal rates were obtained at a 2 wt% SA dosage, which demonstrated that SA significantly improved the Cu²⁺ and Zn²⁺ removal efficiency during electrokinetic process. The abundant functional groups of SA allowed metal ions desorption from soil via ion-exchange, complexation, and electrolysis. Pb²⁺ ions were difficult to remove from soil by SA due to the higher gelation affinity with Pb²⁺ than Cu²⁺ and Zn²⁺, despite the Pb²⁺ exchangeable fraction partially transforming to the reducible and oxidizable fractions. CTS could complex metal ions and migrate into the catholyte under the electric field to form crosslinked CTS gelations. Consequently, this study proved the suitability of biodegradable complexing agents for treating soil contaminated with heavy metals using electrokinetic remediation.
Afficher plus [+] Moins [-]Adsorption characteristics of tetracycline onto particulate polyethylene in dilute aqueous solutions
2021
Nguyễn, Thanh Bình | Ho, Thi-Bao-Chau | Huang, Jinbao | Chen, Chiu-Wen | Hsieh, Shu-Ling | Tsai, Wen-Pei | Dong, Cheng-Di
The presence of ultrafine plastics particles and its potential to concentrate and transport organic contaminants in aquatic environments have become a major concern in recent years. Specifically, the uptake of hazardous chemicals by plastics particles may affect the distribution and bioavailability of the chemicals. In this study, the adsorption of tetracycline (TC), an antibiotic frequently found in aquatic environments, on high-density polyethylene (PE) particles with the average size of 45 μm, was investigated. The PE particles were characterized for surface acidity for the first time. Results showed that pH controls the surface charge of PE particles. TC adsorption onto PE particles was rapid as expected following the pseudo-second-order rate law (r² > 0.99). Polar forces in addition to specific chemical interactions, such as hydrogen bonding and hydrophophilicity controlled TC adsorption onto PE particles. Parameters, including pH, dissolved organic matter, ionic strength, major cations and anions affected TC adsorption onto PE micro-particles. Results indicated that PE particles can function as a carrier of antibiotics in the aquatic environment, which potentially imposes ecosystem and human health risks.
Afficher plus [+] Moins [-]Effects of seasonal variation and resuspension on microplastics in river sediments
2021
Xia, Feiyang | Yao, Quanwei | Zhang, Jun | Wang, Dunqiu
Although microplastics are an emerging pollutant of global concern, little is known about the environmental behavior of microplastic in sediments. This study investigated the occurrence and seasonal variation of microplastics in the sediments of Liangfeng River, China with a fluorescence staining method, and then explored the transfer of microplastics at the water and sediment interfaces during resuspension. The results showed that smaller microplastics were detected in the sediments, which were concentrated in the size range of 50–500 μm. Microplastic abundance in the sediments in the dry season were slightly higher than those from the rainy season, and the rainy season promotes the accumulation of smaller microplastics in the sediment along the river-flow direction but not for the dry season. The shape of microplastics were predominantly fibers, followed by fragments and films. Polyethylene was the most abundant polymer, accounting for more than 50% of the total. Microplastics in the surface sediment move both to the overlying water and deeper sediment during the disturbance process. Disturbance-induced resuspension and vertical transport have significant effects on small-sized microplastics (50–500 μm). Small-sized microplastics can potentially migrate and redistribute via resuspension at different temporal and spatial scales, as some extent of resuspension is occurring in most river systems, especially in urban areas with boat traffic.
Afficher plus [+] Moins [-]Predicting the rate constants of volatile organic compounds (VOCs) with ozone reaction at different temperatures
2021
Liu, Yawei | Liu, Shiqiang | Cheng, Zhiwen | Tan, Yujia | Gao, Xiaoping | Shen, Zhemin | Yuan, Tao
Based on the bond order, fukui indices and other related descriptors, as well as temperature, a new QSAR model was established to predict the rate constant (kO₃) of VOCs degradation by O₃. 302 logkO₃ values (178–409 K) of 149 VOCs were divided into training set (242 logkO₃) and test set (60 logkO₃), respectively, which were used to construct and verify the QSAR model. The optimal model (R² = 0.83, q² = 0.82, Qₑₓₜ² = 0.72) shows that EHOMO, BOₓ and q(C⁻)ₙ have a greater influence on the value of logkO₃. In addition, fukui indices and logkO₃ are well correlated. The applicability domains of the current models can be used to predict kO₃ of a wide range of VOCs at different temperatures.
Afficher plus [+] Moins [-]Strigolactone GR24 improves cadmium tolerance by regulating cadmium uptake, nitric oxide signaling and antioxidant metabolism in barley (Hordeum vulgare L.)
2021
Qiu, Cheng-Wei | Zhang, Can | Wang, Nian-Hong | Mao, Weihua | Wu, Feibo
Cadmium (Cd) in the food chain poses a serious hazard to human health. Therefore, a greenhouse hydroponic experiment was conducted to examine the potential of exogenously strigolactone GR24 in lessening Cd toxicity and to investigate its physiological mechanisms in the two barley genotypes, W6nk2 (Cd-sensitive) and Zhenong8 (Cd-tolerant). Exogenous application of 1 μM GR24 (strigol analogue) reduced the suppression of growth caused by 10 μM Cd, lowered plant Cd contents, increased the contents of other nutrient elements, protected chlorophyll, sustained photosynthesis, and markedly reduced Cd-induced H₂O₂ and malondialdehyde accumulation in barley. Furthermore, exogenous GR24 markedly increased NO contents and nitric oxide synthase activity in the Cd-sensitive genotype, W6nk2, effectively alleviating the Cd-induced repression of the activities of superoxide dismutase and peroxidase, increasing reduced glutathione (GSH) and ascorbic acid (AsA) pools and activities of AsA-GSH cycle including ascorbate peroxidase, glutathione peroxidase, glutathione reductase, dehydroascorbate reductase and monodehydroascorbate reductase. The findings of the present study indicate that GR24 could be a candidate for Cd detoxification by decreasing Cd contents, balancing nutrient elements, and protecting barley plants from toxic oxidation via indirectly eliminating reactive oxygen species (ROS), consequently contributing to reducing the potential risk of Cd pollution.
Afficher plus [+] Moins [-]Colonized extremophile Deinococcus radiodurans alleviates toxicity of cadmium and lead by suppressing heavy metal accumulation and improving antioxidant system in rice
2021
Dai, Shang | Chen, Qi | Jiang, Meng | Wang, Binqiang | Xie, Zhenming | Yu, Ning | Zhou, Yulong | Li, Shan | Wang, Liangyan | Hua, Yuejin | Tian, Bing
Cadmium (Cd) and lead (Pb) are the major toxic heavy metals accumulated in rice and pose a serious threat to human health. The most important remediation strategy is to reduce the translocation of these heavy metals from polluted soil to rice. Bioremediation using microorganisms had been widely used for preventing environmental heavy metal pollution, and the interaction between microorganisms and plants is critical to reduce the heavy metal stress. In this study, we demonstrated that an extremophile Deinococcus radiodurans, especially its mutant strain-Δdr2577 which is deficient in cell surface-layer, could efficiently prevent the translocation and damages of Cd or Pb in rice. The bacterial cells efficiently removed Cd or Pb from culture medium. Following colonization of Δdr2577 cells in rice root, Cd level decreased to 71.6% in root and 60.9% in shoot, comparing to the plants treated with Cd alone; Pb level decreased to 73.3% in root and 56.9% in shoot, comparing to the plants treated with Pb alone. Meanwhile, the bacterial cells released their intracellular antioxidant-related molecules including glutamate and manganese ions into culture medium. Accumulation of glutamate and manganese ions detected in rice root and shoot ameliorate Cd/Pb-induced oxidative stress as indicated by reduced levels of ROS and enhanced activities of antioxidant enzymes in rice. Our results provide a potential application of an extremophile bacterium in alleviating heavy metal toxicity in rice.The main findings of the work reveal the interaction between the D. radiodurans and rice, as well as the alleviating mechanism of Cd and Pb toxicity through suppressing heavy metal accumulation and improving the antioxidant system in rice by the extremophile bacterium.
Afficher plus [+] Moins [-]Imbalance of intestinal microbial homeostasis caused by acetamiprid is detrimental to resistance to pathogenic bacteria in Bombyx mori
2021
Li, Fanchi | Li, Mengxue | Zhu, Qingyu | Mao, Tingting | Dai, Minli | Ye, Wentao | Bian, Dandan | Su, Wujie | Feng, Piao | Ren, Yuying | Sun, Haina | Wei, Jing | Li, Bing
The neonicotinoid insecticide acetamiprid is widely applied for pest control in agriculture production, and its exposure often results in adverse effects on a non-target insect, Bombyx mori. However, only few studies have investigated the effects of exposure to sublethal doses of neonicotinoid insecticides on gut microbiota and susceptibility to pathogenic bacteria. In this study, we aimed to explore the possible mechanisms underlying the acetamiprid-induced compositional changes in gut microbiota of silkworm and reduced host resistance against detrimental microbes. This study indicated that sublethal dose of acetamiprid activated the dual oxidase-reactive oxygen species (Duox-ROS) system and induced ROS accumulation, leading to dysregulation of intestinal immune signaling pathways. The evenness and structure of bacterial community were altered. Moreover, after 96 h of exposure to sublethal dose of acetamiprid, several bacteria, such as Pseudomonas sp (Biotype A, DOP-1a, XW34) and Staphylococcus sp (RCB1054, RCB314, X302), invaded the silkworm hemolymph. The survival rate and bodyweight of the acetamiprid treated silkworm larvae inoculated with Enterobacter cloacae (E. cloacae) were significantly lower than the acetamiprid treatment group, suggesting that acetamiprid reduced silkworm resistance against pathogens. These findings indicated that acetamiprid disturbed gut microbial homeostasis of Bombyx mori, resulting in changes in gut microbial community and susceptibility to detrimental microbes.
Afficher plus [+] Moins [-]