Affiner votre recherche
Résultats 1441-1450 de 4,921
In vivo solid-phase microextraction sampling combined with metabolomics and toxicological studies for the non-lethal monitoring of the exposome in fish tissue
2019
Roszkowska, Anna | Yu, Miao | Bessonneau, Vincent | Ings, Jennifer | McMaster, Mark | Smith, Richard | Bragg, Leslie | Servos, Mark | Pawliszyn, Janusz
Various environmental studies have employed the biomonitoring of fish in their aquatic ecosystems in order to identify potential metabolic responses to the exposome. In this study, we applied in vivo solid-phase microextraction (SPME) to perform non-lethal sampling on the muscle tissue of living fish to extract toxicants and various endogenous metabolites. Sixty white suckers (Catastomus commersonii) were sampled from sites upstream, adjacent, and downstream from the oil sands development region of the Athabasca River (Alberta, Canada) in order to track their biochemical responses to potential contaminants. In vivo SPME sampling facilitated the extraction of a wide range of endogenous metabolites, mainly related to lipid metabolism. The obtained results revealed significant changes in the levels of numerous metabolites, including eicosanoids, linoleic acids, and fat-soluble vitamins, in fish sampled in different areas of the river, thus demonstrating SPME's applicability for the direct monitoring of exposure to different environmental toxicants. In addition, several classes of toxins, including petroleum-related compounds, that can cause serious physiological impairment were tentatively identified in the extracts. In vivo SPME, combined with the analysis of contaminants and endogenous metabolites, provided important information about the exposome; as such, this approach represents a potentially powerful and non-lethal tool for identifying the mechanisms that produce altered metabolic pathways in response to the mixtures of different environmental pollutants.
Afficher plus [+] Moins [-]Glutathione alleviates the cadmium exposure-caused porcine oocyte meiotic defects via eliminating the excessive ROS
2019
Zhou, Changyin | Zhang, Xue | Chen, Yixuan | Liu, Xiangping | Sun, Yuxin | Xiong, Bo
Heavy metal cadmium (Cd) is a widespread environmental contaminant with a potential toxicity that might adversely influence the health of experimental animals and humans. It has been known that Cd might accumulate in vertebrates for many years and thus leads to the hepatic and renal toxicity. Additionally, Cd concentration in the ovary increases with age and is highly related to the reproductive hazard. However, the underlying mechanisms regarding how Cd affects the female reproductive system especially the oocyte quality have not yet fully defined. Here, we reported that Cd exposure led to the defective nuclear maturation of oocytes via the impairment of cytoskeleton assembly, displaying the aberrant spindle organization, chromosome alignment and actin polymerization. In the meantime, Cd exposure caused the impaired cytoplasmic maturation by showing the disrupted dynamics of mitochondrial integrity and cortical granules, and thereby resulting in the compromised sperm binding ability and fertilization capacity of oocytes. More importantly, we found that glutathione (GSH) supplementation was able to recover the meiotic failure induced by Cd exposure through suppressing the excessive ROS level, DNA damage accumulation and apoptotic incidence. Taken together, our findings demonstrate that Cd exposure has the adverse effects on the oocyte meiotic maturation as well as subsequent fertilization, and provide a potential effective strategy to improve the quality of Cd-exposed oocytes.
Afficher plus [+] Moins [-]Toxicity beyond accumulation of Titanium after exposure of Mytilus galloprovincialis to spiked seawater
2019
Monteiro, Rui | Costa, Silvana | Coppola, Francesca | Freitas, Rosa | Vale, Carlos | Pereira, Eduarda
Mytilus galloprovincialis was exposed to seawater spiked with 5, 50 and 100 μg L⁻¹ of Titanium (Ti) for 14 days. Seawater was renewed after 96 h and new addition of Ti was done. A parallel experiment conducted in the absence of mussels showed that during the first 24 h after spiking, Ti concentrations in seawater rapidly decreased to values below 2 μg L⁻¹. For this reason, along the entire experimental period (14 days) mussels were exposed to Ti during two short periods, in the beginning of the experiment and after seawater renewal. At 96 h, mussels exhibited low Ti concentrations (<2.5 μg g⁻¹), close or not significantly different from a control condition (1.6 μg g⁻¹ in the absence of Ti). Despite the low accumulated Ti in mussels’ tissues after both experimental periods (96 h and 14 days), biochemical markers indicated that mussels developed two main strategies: reduction of their metabolic capacity to avoid the uptake of Ti, and antioxidant and biotransformation defense mechanisms, such as the activation of SOD, CAT, GPx and GSTs enzymes that were triggered to prevent cellular damages. Nevertheless, oxidative stress occurred after 96 h or 14 days. The current study highlights that alterations of biological activity of M. galloprovincialis exposed to Ti goes beyond its accumulation in tissues.
Afficher plus [+] Moins [-]Concentrations and gas-particle partitioning of atmospheric reactive mercury at an urban site in Beijing, China
2019
Zhang, Huan | Wang, Zhangwei | Wang, Chunjie | Zhang, Xiaoshan
Measurements of speciated atmospheric mercury play a key role in identifying mercury behavior in the atmosphere. In this study, we measured speciated atmospheric mercury, including gaseous elemental mercury (GEM), reactive gaseous mercury (RGM), and particulate bound mercury (PBM) (<2.5 μm), in 2015 and 2016 at an urban site in Beijing, China. The mean concentrations of GEM, RGM, and PBM were 4.70 ± 3.53 ng m−3, 18.47 ± 22.27 pg m−3, and 85.18 ± 95.34 pg m−3, respectively. The concentration of PM2.5 significantly affected the distribution of reactive mercury between the gaseous and particulate phases. With the raising of PM2.5 levels, PBM concentrations increased, on the contrary, the concentrations of RGM decreased gradually. The mean concentration of PBM during air-pollution events was more than three times that during clear days. During days with air pollution, the relative humidity significantly affected the gas-particle partitioning of reactive mercury. The linear relationships between gas-particle partitioning coefficient and meteorological factors (air temperature and relative humidity) were obtained over the four seasons. The data also showed that the gas-particle partitioning coefficient of reactive mercury was related to particle composition (e.g., Cl−, BC). The data present in this paper suggested the influence of anthropogenic emissions on reactive mercury in Beijing urban. And the findings will contribute to understand the gas-particle partitioning of reactive mercury and its influencing factors with complex urban pollution.
Afficher plus [+] Moins [-]Size-dependent adsorption of antibiotics onto nanoparticles in a field-scale wastewater treatment plant
2019
Yu, Kaifeng | Sun, Chi | Zhang, Bo | Hassan, Muhammad | He, Yiliang
This work present aims to evaluate the effect of a conventional wastewater treatment process on the number of nanoparticles, and the role of nanoparticles as a carrier of antibiotics. A set of methods based on asymmetrical flow field flow fractionation coupled with multi-angle light scattering to separate and quantify nanoparticles in real wastewater was established. The characterization of nanoparticles was conducted by transmission electron microscopy, energy dispersive spectrometer, UV–visible spectrophotometer and three-dimensional excitation-emission matrix fluorescence spectroscopy. The adsorption of different sizes of nanoparticles separated from the real wastewater for four targeted antibiotics (sulfadiazine, ofloxacin, tylosin and tetracycline) was studied. The results show that the number of nanoparticles were increased in the wastewater treatment process and the size range between 60 and 80 nm was predominant in wastewater samples. The nanoparticles were mainly composed of O, Si, Al and Ca elements and organic components were in the size range of 0–10 nm. Targeted antibiotics were dominantly adsorbed onto nanoparticles with 60–80 nm size range at each stage. The concentrations of tetracycline adsorbed on nanoparticles were surprisingly increased in the end of the treatment process, while ofloxacin and tylosin had the completely opposite phenomenon to tetracycline. The pH and ionic strength definitely affected the aggregation of nanoparticles and interaction with the antibiotics. It is of great significance to give insights into nanoparticle-antibiotic assemblages for the effective treatment and avoiding the water risks due to nanoparticles’ ubiquitous and their risks of carrying antibiotics.
Afficher plus [+] Moins [-]Exposures to chemical contaminants: What can we learn from reproduction and development endpoints in the amphibian toxicology literature?
2019
Slaby, Sylvain | Marin, Matthieu | Marchand, Guillaume | Lemiere, Sébastien
Environmental contamination is one of the major factors or cofactors affecting amphibian populations. Since 2000, the number of studies conducted in laboratory conditions to understand impacts of chemical exposures increased. They aimed to characterize biological effects on amphibians. This review proposes an overview of biological responses reported after exposures to metals, phytopharmaceuticals or emerging organic contaminants and focuses on endpoints relating to reproduction and development. Due to amphibian peculiar features, these periods of their life cycle are especially critical to pollutant exposures.Despite the large range of tested compounds, the same model species are often used as biological models and morphological alterations are the most studied observations. From the results, the laboratory-to-field extrapolation remained uneasy and exposure designs have to be more elaborated to be closer to environmental conditions. Few studies proposed such experimental approaches. Lastly, gametes, embryos and larvae constitute key stages of amphibian life cycle that can be harmed by exposures to freshwater pollutants. Specific efforts have to be intensified on the earliest stages and notably germ cells.
Afficher plus [+] Moins [-]TAK1 knock-down in macrophage alleviate lung inflammation induced by black carbon and aged black carbon
2019
Cheng, Zhiyuan | Chu, Hongqian | Wang, Siqi | Huang, Yao | Hou, Xiaohong | Zhang, Qi | Zhou, Wenjuan | Jia, Lixia | Meng, Qinghe | Shang, Lanqin | Song, Yiming | Hao, Weidong | Wei, Xuetao
Black carbon (BC) can combine with organic matter and form secondary pollutants known as aged BC. BC and aged BC can cause respiratory system inflammation and induce lesions at relevant sites, but the underlying mechanism has remained unknown. To gain insight into the potential mechanisms, we focused on macrophages and transforming growth factor β-activated kinase 1 (TAK1) which are a crucial factor in inflammation. Our research aims to determine the role of TAK1 in macrophages in pulmonary inflammation induced by particulate matter. In this study, BC and 1,4-naphthoquinone were mixed to model aged BC (1,4NQ-BC) in atmosphere. BC induced mice lung inflammation model, lung macrophage knock-down TAK1 animal model and primary macrophage knock-down TAK1 model were used to explore whether TAK1 in macrophage is a critical role in the process of inflammation. The results showed that the expressions of inflammatory cytokines (IL-1β, IL-6, IL-33) mRNA were significantly increased and the phosphorylation of MAPK and NF-κB signaling pathway related proteins were enhanced in RAW 264.7 cell lines. In vivo studies revealed that the indicators of pulmonary inflammation (pathology, inflammatory cell numbers) and related cytokines (IL-1β, IL-6, IL-33) mRNA expressions in CD11c-Map3k7⁻/⁻ animals were significantly lower than wild-type animals after mice were instilled particles. In mice primary macrophages, the expressions of IL-6, IL-33 mRNA were inhibited after TAK1 gene was knock-down. These results unequivocally demonstrated that TAK1 plays a crucial role in BC induced lung inflammation in mice, and we can infer that BC and 1,4NQ-BC cause these inflammatory responses by stimulating pulmonary macrophages.
Afficher plus [+] Moins [-]Influence of process parameters on the heavy metal (Zn2+, Cu2+ and Cr3+) content of struvite obtained from synthetic swine wastewater
2019
Huang, Haiming | Li, Bing | Li, Jing | Zhang, Peng | Yu, Wei | Zhao, Ning | Guo, Guojun | Young, Brent
Struvite recovered from swine wastewater can be used as a good slow release fertilizer. Nevertheless, the presence of heavy metals would be easily precipitated with struvite and increase the ecological risk for its agricultural use. This paper investigated the possibility of using process variables for heavy metal (Cu2+, Zn2+ and Cr3+) minimization during struvite crystallization in swine wastewater. The heavy metal content, effect ratios (ER) of the citric acid concentration under varying conditions were tested and their SEM, EDS and XRD patterns were compared for morphology analysis. The results show that an increase in pH decreased the content of Cu, Zn and Cr in recovered precipitates. Heavy metal content in the precipitates increased markedly with their initial concentrations in the solution. The effect ratio calculation indicates that Cr has the strongest co-precipitation potential, followed by Zn and Cu. An increase in citric acid concentration reduced the heavy metal removal efficiency (14.3, 27.7 and 28.1% for Cu, Zn and Cr, respectively) but did not decrease their content in struvite precipitates. What is more, increase of total ammonia nitrogen (TAN) to soluble phosphate molar ratio significantly decreased Cu, Zn removal efficiency (52.2 and 50% respectively), while Mg:PO4P molar ratio had much less effect.
Afficher plus [+] Moins [-]Occurrence, composition profiles and risk assessment of polycyclic aromatic hydrocarbons in municipal sewage sludge in China
2019
Sun, Shao-Jing | Zhao, Ze-Bin | Li, Bo | Ma, Li-Xin | Fu, Dong-Lei | Sun, Xia-Zhong | Thapa, Samit | Shen, Ji-Min | Qi, Hong | Wu, Yi-Ning
A nationwide survey, including 75 sludge samples and 18 wastewater samples taken from different wastewater treatment plants (WWTPs) from 23 cities, was carried out to investigate the occurrence and composition profiles of polycyclic aromatic hydrocarbons (PAHs) in China. In total, the concentrations of ∑16PAHs in sludge ranged from 565 to 280,000 ng/g (mean: 9340 ng/g) which was at a moderate level in the world. The composition profiles of PAHs were characterized by 3- and 4-ring PAHs in textile dyeing sludge and 4- and 5-ring PAHs in domestic sludge. Significant variations in regional distribution of PAHs were observed. Both the principal components analysis and diagnostic ratios revealed that vehicle exhaust, coal and natural gas combustion were the main sources of PAHs in China. The estimated concentrations of PAHs were 3820 ng/L and 1120 ng/L in influents and effluents of the WWTPs, respectively. The high toxic equivalent quantity (TEQ) values of PAHs are ascribed to the high PAH levels. Risk quotient values (RQs) in sludge indicated that there was low potential risk to soil ecosystem after sludge had been applied one year except for indeno [1,2,3-cd]pyrene (IcdP) detected in Huaibei, Anhui province.
Afficher plus [+] Moins [-]Physiological responses of wheat planted in fluvo-aquic soils to di (2-ethylhexyl) and di-n-butyl phthalates
2019
Gao, Minling | Liu, Yu | Dong, Youming | Song, Zhengguo
Di (2-ethylhexyl) phthalate (DEHP) and di-n-butyl phthalate (DBP) are important pollutants that contaminate agricultural soils. We determined the effects of di (2-ethylhexyl) phthalate (DEHP) and di-n-butyl phthalate (DBP) on the production of reactive oxygen species, photosynthesis, and activity of antioxidant enzymes in wheat planted in fluvo-aquic soils. DBP- and DEHP-induced oxidative stress decreased the values of the photosynthetic/fluorescence parameters (except for intercellular carbon dioxide concentration) and chlorophyll content at the seedling, jointing, and booting stages. Moreover, the non-stomatal factor responsible for the net decrease in photosynthetic efficiency was identified as the decrease in fluorescence resulting from the decreased amount of chlorophyll a returning from the excited to the ground energy state. The content of superoxide anions and hydrogen peroxide in wheat leaves and roots increased with increasing DBP and DEHP supplementation, compared to the control. Antioxidant enzyme activities in the leaves and roots at the seedling stage increased at DBP and DEHP levels of 10 and 20 mg kg⁻¹, respectively, and the enzyme activities at the jointing and booting stages increased with increasing concentrations of the chemicals, compared to the control. These results demonstrated that increased levels of antioxidant enzymes play a significant role in protecting plant growth under DBP and DEHP stress.
Afficher plus [+] Moins [-]