Affiner votre recherche
Résultats 1441-1450 de 7,975
Polybrominated diphenyl ethers in serum from residents living in a brominated flame retardant production area: Occurrence, influencing factors, and relationships with thyroid and liver function
2021
Zhao, Xuezhen | Yang, Xiaodi | Du, Yinglin | Li, Renbo | Zhou, Tao | Wang, Yuwei | Chen, Tian | Wang, Dejun | Shi, Zhixiong
Polybrominated diphenyl ethers (PBDEs) have been used as flame retardants (FRs) in China for decades, even after they were identified as persistent organic pollutants. In this study, serum samples were collected from 172 adults without occupational exposure who were residents of a well-known FR production region (Laizhou Bay, north China), and PBDE congeners were measured to assess their occurrence, congener profile and influencing factors in serum. Moreover, the relationships between serum concentrations of PBDEs and thyroid/liver function indicators were analyzed to evaluate whether human exposure to PBDEs would lead to thyroid/liver injury. All 8 PBDE congeners were detected at higher frequencies and serum concentrations than those found in general populations. The median levels of ∑PBDEs, BDE-209 and ∑₃₋₇PBDEs (sum of tri-to hepta-BDEs) were 64.5, 56.9 and 7.2 ng/g lw (lipid weight), respectively, which indicated that deca-BDE was the primarily produced PBDE in Laizhou Bay and that the lower brominated BDEs were still ubiquitous in the environment. Gender was a primary influencing factor for some BDE congeners in serum; their levels in female serum samples were significantly lower than those in male serum samples. Serum PBDE levels showed a downward trend with increased body mass index (BMI), which might reflect the increasing serum lipid contents. Serum levels of some BDE congeners were significantly positively correlated with certain thyroid hormones and antibodies, including free triiodothyronine (fT3), total triiodothyronine (tT3), total thyroxine (tT4) and thyroid peroxidase antibody (TPO-Ab). Levels of some congeners were significantly negatively correlated with some types of serum lipid, including cholesterol (CHOL), low density lipoprotein (LDL) and total triglyceride (TG). Other than serum lipids, only two liver function indicators, total protein (TP) and direct bilirubin (DBIL), were significantly correlated with certain BDE congeners (BDE-100 and BDE-154). Our results provide new evidence on the thyroid-disrupting and hepatotoxic effects of PBDEs.
Afficher plus [+] Moins [-]Species-specific impact of microplastics on coral physiology
2021
Mendrik, F.M. | Henry, T.B. | Burdett, H. | Hackney, C.R. | Waller, C. | Parsons, D.R. | Hennige, S.J.
There is evidence that microplastic (MP) pollution can negatively influence coral health; however, mechanisms are unknown and most studies have used MP exposure concentrations that are considerably higher than current environmental conditions. Furthermore, whether MP exposure influences coral susceptibility to other stressors such as ocean warming is unknown. Our objective was to determine the physiology response of corals exposed to MP concentrations that have been observed in-situ at ambient and elevated temperature that replicates ocean warming. Here, two sets of short-term experiments were conducted at ambient and elevated temperature, exposing the corals Acroporasp. and Seriatopora hystrix to microspheres and microfibres. Throughout the experiments, gross photosynthesis and net respiration was quantified using a 4-chamber coral respirometer, and photosynthetic yields of photosystem II were measured using Pulse-Amplitude Modulated (PAM) fluorometry. Results indicate the effect of MP exposure is dependent on MP type, coral species, and temperature. MP fibres (but not spheres) reduced photosynthetic capability of Acropora sp., with a 41% decrease in photochemical efficiency at ambient temperature over 12 days. No additional stress response was observed at elevated temperature; photosynthetic performance significantly increased in Seriatopora hystrix exposed to MP spheres. These findings show that a disruption to coral photosynthetic ability can occur at MP concentrations that have been observed in the marine environment and that MP pollution impact on corals remains an important aspect for further research.
Afficher plus [+] Moins [-]Mangroves as unique but understudied traps for anthropogenic marine debris: A review of present information and the way forward
2021
Luo, Ying Y. | Not, Christelle | Cannicci, Stefano
Marine debris and plastic pollution affect all coastal habitats, however coastal debris studies are predominantly performed on sandy beaches. Other coastal habitats, such as mangroves, remain understudied. Eighteen of the top twenty rivers that contribute the most plastic to the ocean are associated with mangroves, but very few of those forests were investigated in terms of plastic debris pollution. Here we discuss the results of the few available studies on macrodebris conducted in mangroves, which show that mangrove debris research is still in its early stages, with many areas of study to be further investigated. Indeed, the distinct structural complexity of mangroves increases their ability to trap debris from both terrestrial, freshwater and marine sources, resulting in impacts unique to the mangrove ecosystem. Our review highlights a significant lack in standardisation across the performed surveys. Here we suggest standardised guidelines for future integrated macrodebris and microplastic studies in mangroves to facilitate comparisons between studies. Such standardisation should prioritize the use of stratified random sampling, the measurement of the area covered by the debris and the abundance and type of macrodebris and microplastics found, in order to assess the ecological impact of macrodebris and its role as source of microplastics for adjacent ecosystems. We also advocate the use of standard categories across studies, based on those identified for surveying other coastal habitats. This review highlights an alarming knowledge gap in extent, sources and overall impacts of marine macrodebris, mainly constituted by plastic, on mangrove forests, which hinders policy making to address this issue. Standardised, reliable and extended research on this aspect of mangrove pollution is needed to manage and protect these endangered vegetated coastal ecosystems.
Afficher plus [+] Moins [-]Biochemical toxicity, lysosomal membrane stability and DNA damage induced by graphene oxide in earthworms
2021
Zhao, Shulan | Wang, Yanli | Duo, Lian
With the growing production and use of carbon nanomaterials (CNMs), the risk of their releases to the environment has drawn much attention. However, their potential effect on soil invertebrates has not yet been systematically assessed. Herein, the toxic effects of graphene oxide (GO) on earthworms (Eisenia fetida) were thoroughly investigated. Exposure to different doses of GO (0, 5, 10, 20, and 30 g kg⁻¹) was conducted for 7, 14, 21, and 28 days. The results showed that enzymatic activity was stimulated at the early stages of exposure (7 days and 14 days) and inhibited after 14 days for catalase (CAT) and after 21 days for peroxidase (POD) and superoxide dismutase (SOD), especially at high GO doses. The content of MDA showed an increasing trend over the whole exposure period and was significantly elevated by GO from 21 days except at the dose of 5 g kg⁻¹on day 21. Lysosomal membrane stability and DNA damage presented dose- and time-dependent relationships. Graphene oxide remarkably decreased lysosomal membrane stability except at the dose of 5 g kg⁻¹ on day 7. The tail DNA%, tail length and olive tail moment increased with increasing GO dose throughout the exposure duration, reaching maximum values at the end of exposure (28 days). These findings suggest that GO induces oxidative stress and genotoxicity in Eisenia fetida, resulting in lipid peroxidation, decreased lysosomal membrane stability and DNA damage. Therefore, attention should be paid to the potential pollution and risk associated with graphene oxide application. The results can provide valuable information for environmental safety assessment of graphene nanomaterials in soil.
Afficher plus [+] Moins [-]Repeated exposure to fungicide tebuconazole alters the degradation characteristics, soil microbial community and functional profiles
2021
Han, Lingxi | Kong, Xiabing | Xu, Min | Nie, Jiyun
Tebuconazole is a broad-spectrum triazole fungicide that has been extensively applied in agriculture, but its toxicity on soil ecology remains unknown after repeated introduction to soil. This study investigated the degradation of tebuconazole and the changes in soil microbial community composition and functional diversity as well as network complexity in soil repeatedly treated with tebuconazole. Tebuconazole degraded slowly as the degradation half-life initially increased and then decreased during the four repeated treatments. High concentration of tebuconazole treatment significantly delayed the degradation of tebuconazole. The soil microbial functional diversity in tebuconazole-treated soils showed an inhibition-recovery-stimulation trend with increasing treatment frequency, which was related to the increased degradation rates of tebuconazole. Tebuconazole significantly decreased soil microbial biomass and bacterial community diversity, and this decreasing trend became more pronounced with increasing treatment frequency and concentration. Moreover, tebuconazole significantly decreased soil bacterial community network complexity, particularly at high concentration of tebuconazole treatment. Notably, four bacterial genera, Methylobacterium, Burkholderia, Hyphomicrobium, and Dermacoccus, were identified as the potential tebuconazole-degrading bacteria, with the relative abundances in the tebuconazole treatment significantly increasing by 42.1–34687.1% compared to the control. High concentration of tebuconazole treatment delayed increases in the relative abundances of Methylobacterium but promoted those of Burkholderia, Hyphomicrobium and Dermacoccus. Additionally, repeated tebuconazole treatments improved only four metabolic pathways, cell motility, membrane transport, environmental information processing, and xenobiotics biodegradation and metabolism, which were associated with the degradation of tebuconazole. The above results indicated that repeated tebuconazole treatments resulted in the significant accumulation of residues and long-term negative effects on soil ecology, and also emphasized the potential roles of dominant indigenous microbial bacteria in the degradation of tebuconazole.
Afficher plus [+] Moins [-]Bio-activation of soil with beneficial microbes after soil fumigation reduces soil-borne pathogens and increases tomato yield
2021
Cheng, Hongyan | Zhang, Daqi | Ren, Lirui | Song, Zhaoxin | Li, Qingjie | Wu, Jiajia | Fang, Wensheng | Huang, Bin | Yan, Dongdong | Li, Yuan | Wang, Qiuxia | Cao, Aocheng
Soil-borne diseases have become increasingly problematic for farmers producing crops intensively under protected agriculture. Although soil fumigants are convenient and effective for minimizing the impact of soil-borne disease, they are most often detrimental to beneficial soil microorganisms. Previous research showed that bio-activation of soil using biological control agents present in biofertilizers or organic fertilizers offered promise as a strategy for controlling soil-borne pathogens when the soil was bio-activated after fumigation. Our research sought to determine how bio-activation can selectively inhibit pathogens while promoting the recovery of beneficial microbes. We monitored changes in the soil’s physicochemical properties, its microbial community and reductions in soil-borne pathogens. We found that the population density of Fusarium and Phytophthora were significantly reduced and tomato yield was significantly increased when the soil was bio-activated. Soil pH and soil catalase activity were significantly increased, and the soil’s microbial community structure was changed, which may have enhanced the soil’s ability to reduce Fusarium and Phytophthora. Our results showed that soil microbial diversity and relative abundance of beneficial microorganisms (such as Sphingomonas, Bacillus, Mortierella and Trichoderma) increased shortly after bio-activation of the soil, and were significantly and positively correlated with pathogen suppression. The reduction in pathogens may have been due to a combination of fumigation-fertilizer that reduced pathogens directly, or the indirect effect of an optimized soil microbiome that improved the soil’s non-biological factors (such as soil pH, fertility structure), enhanced the soil’s functional properties and increased tomato yield.
Afficher plus [+] Moins [-]Exposure to nanoparticles derived from diesel particulate filter equipped engine increases vulnerability to arrhythmia in rat hearts
2021
Rossi, Stefano | Buccarello, Andrea | Caffarra Malvezzi, Cristina | Pinelli, Silvana | Alinovi, Rossella | Guerrero Gerboles, Amparo | Rozzi, Giacomo | Leonardi, Fabio | Bollati, Valentina | De Palma, Giuseppe | Lagonegro, Paola | Rossi, F. (Francesca) | Lottici, Pier Paolo | Poli, Diana | Statello, Rosario | Macchi, Emilio | Miragoli, Michele
Air pollution is well recognized as a central player in cardiovascular disease. Exhaust particulate from diesel engines (DEP) is rich in nanoparticles and may contribute to the health effects of particulate matter in the environment. Moreover, diesel soot emitted by modern engines denotes defective surfaces alongside chemically-reactive sites increasing soot cytotoxicity. We recently demonstrated that engineered nanoparticles can cross the air/blood barrier and are capable to reach the heart. We hypothesize that DEP nanoparticles are pro-arrhythmogenic by direct interaction with cardiac cells. We evaluated the internalization kinetics and the effects of DEP, collected from Euro III (DEPe3, in the absence of Diesel Particulate Filter, DPF) and Euro IV (DEPe4, in the presence of DPF) engines, on alveolar and cardiac cell lines and on in situ rat hearts following DEP tracheal instillation. We observed significant differences in DEP size, metal and organic compositions derived from both engines. DEPe4 comprised ultrafine particles (<100 nm) and denoted a more pronounced toxicological outcome compared to DEPe3. In cardiomyocytes, particle internalization is fastened for DEPe4 compared to DEPe3. The in-vivo epicardial recording shows significant alteration of EGs parameters in both groups. However, the DEPe4-instilled group showed, compared to DEPe3, a significant increment of the effective refractory period, cardiac conduction velocity, and likelihood of arrhythmic events, with a significant increment of membrane lipid peroxidation but no increment in inflammation biomarkers. Our data suggest that DEPe4, possibly due to ultrafine nanoparticles, is rapidly internalized by cardiomyocytes resulting in an acute susceptibility to cardiac electrical disorder and arrhythmias that could accrue from cellular toxicity. Since the postulated transfer of nanoparticles from the lung to myocardial cells has not been investigated it remains open whether the effects on the cardiovascular function are the result of lung inflammatory reactions or due to particles that have reached the heart.
Afficher plus [+] Moins [-]Variations in characteristics and transport pathways of PM2.5 during heavy pollution episodes in 2013–2019 in Jinan, a central city in the north China Plain
2021
Wang, Gang | Zhu, Zhongyi | Zhao, Na | Wei, Peng | Li, Guohao | Zhang, Hanyu
The characteristics and transport pathways of air masses vary during heavy pollution episodes (HPEs). Three categories of HPEs have been defined: HPE Ι, II, and III, corresponding to HPE durations of 1, 2, and at least 3 days, respectively. Sixty HPEs were investigated in this study. The number of HPEs decreased from 2013 to 2017 and then increased from 2017 to 2019, dominated by emission reductions and meteorological conditions. The average and maximum PM₂.₅ (i.e., aerodynamic diameter of <2.5 μm) concentrations during those HPEs in 2019 decreased by 5.6%–11.8% and 11.9%–38.5%, respectively, compared with those in 2013. The longer the duration of an HPE, the higher the PM₂.₅ concentration. Secondary inorganic aerosol concentrations and their contents in PM₂.₅ during HPE Ⅲ were found to be higher than those during HPEs Ι and Ⅱ, as secondary transformations of precursor gases are more intense during long-term HPEs. The dominant trajectories of airflow arriving in Jinan originated from the southern and southeastern regions during HPEs, realized using the Hybrid Single Particle Lagrangian Integrated Trajectory. The trajectories from the north and west of Jinan contained the highest PM₂.₅ concentrations of 323.3–432.1 μg/m³ during HPE Ⅲ, although these trajectories only contributed 5.6%–11.1% of the total dominant transport pathways, while those in trajectories from the northwest were highest during HPEs Ι and Ⅱ. The highest contributions of air masses from short distances were found during HPE Ⅲ, of 77.8%, while they were only 65.6% and 47.8% during HPEs Ι and II, respectively. More attention should be given to transport pathways within the short distance from Jinan. Therefore, enhancing regional cooperation in Jinan and surrounding regions (particularly in the south, southeast, northwest, west, and north) is critical for improving air quality in the North China Plain.
Afficher plus [+] Moins [-]Wintertime chemical characteristics of aerosol and their role in light extinction during clear and polluted days in rural Indo Gangetic plain
2021
Izhar, Saifi | Gupta, Tarun | Qadri, Adnan Mateen | Panday, Arnico K.
This paper reports the chemical and light extinction characteristics of fine aerosol (PM₂.₅) during the winter period (2017–18) at Lumbini, Nepal, a rural site on the Indo Gangetic Plains. A modified IMPROVE algorithm was employed to reconstruct light extinction by chemical constituents of aerosol. The fine aerosol levels impacted visibility adversely during daytime, but during nighttime visibility was controlled by fog droplets rather than by aerosols. The PM₂.₅ chemical constituents showed varying characteristics during clear and polluted days. The average NO₃⁻/SO₄²⁻ concentration ratio was 0.57 during clear and 1.36 and polluted days, signifying a change in secondary inorganics and formation processes mainly due to decreasing photochemical production and due to increased partitioning of nitrate particles at a lower temperature. The increased secondary organics contribution and the higher OM/OC ratio (2.2) during polluted days showed the vital role of aqueous processing and biomass burning emissions in determining the concentration of organics. Total light extinction was 2.3 times higher on polluted days compared to clear days, while the PM₂.₅ mass concentration was 1.5 times higher. This variation in mass and extinction order signifies that various chemical components in fine particles have a more considerable impact on light extinction. On clear days we found that carbonaceous particles (OM and EC) made a major contribution to light extinction. In contrast, the extinction contribution by secondary inorganic (especially NH₄NO₃) increased significantly during polluted days, with hygroscopic growth and enhanced scattering efficiency at higher RH conditions playing a major role. The comparison between clear and polluted days altogether suggests that regulating the nitrate sources can help significantly in improving the visibility levels and restrict fog haze development during wintertime in rural IGP.
Afficher plus [+] Moins [-]Heavy metals in different moss species in alpine ecosystems of Mountain Gongga, China: Geochemical characteristics and controlling factors
2021
Xiao, Jun | Han, Xiaoxiao | Sun, Shouqin | Wang, Lingqing | Rinklebe, Jörg
Terrestrial mosses are promising tracers for research concerning metal atmospheric deposition and pollution. Concentrations of Cr, Co, Ni, Zn, Sr, Cd, Ba, and Pb in different moss species from Mountain Gongga, China were analyzed to investigate the effects of growth substrates, geographic elevation, and type of moss species on the accumulation characteristics of heavy metals, as well as to identify heavy metal sources. The ability of heavy metals to accumulate in moss varied significantly, with low concentrations of Cd and Co; medium concentrations of Cr, Ni, and Pb; and high concentrations of Zn, Sr, and Ba. Elevation significantly influenced the accumulation characteristics of heavy metals, with high concentrations found at lower elevations due to proximal pollution. Growth substrate and moss species were found to have certain influence on the bioconcentration capacities of heavy metals in moss in this study. Correlation analysis showed similar sources for Sr, Zn, and Ba, as well as for Ni, Co, and Cr. The positive matrix factorization (PMF) model was consistent with atmospheric deposition of Pb and Cd; substrate sources of Cr, Co, and Ni; and anthropogenic sources of Ba, Sr, and Zn. This research characterized the accumulation characteristics of heavy metals and their influence factors in different mosses found in alpine ecosystems and provides a reference for future studies in similar areas.
Afficher plus [+] Moins [-]