Affiner votre recherche
Résultats 1451-1460 de 1,546
Speciation distribution and mass balance of copper and zinc in urban rain, sediments, and road runoff Texte intégral
2012
Zuo, XiaoJun | Fu, Dafang | Li, He
Heavy metal pollution in road runoff had caused widespread concern since the last century. However, there are little references on metal speciation in multiple environmental media (e.g., rain, road sediments, and road runoff). Our research targeted the investigation of metal speciation in rain, road sediments, and runoff; the analysis of speciation variation and mass balance of metals among rain, road sediments, and runoff; the selection of main factors by principal component analysis (PCA); and the establishment of equation to evaluate the impact of rain and road sediments to metals in road runoff. Sequential extraction procedure contains five steps for the chemical fractionation of metals. Flame atomic absorption spectrometry (Shimadzu, AA-6800) was used to determine metal speciation concentration, as well as the total and dissolved fractions. The dissolved fractions for both Cu and Zn were dominant in rain. The speciation distribution of Zn was different from that of Cu in road sediments, while speciation distribution of Zn is similar to that of Cu in runoff. The bound to carbonates for both Cu and Zn in road sediments were prone to be dissolved by rain. The levels of Cu and Zn in runoff were not obviously influenced by rain, but significantly influenced by road sediments. The masses for both Cu and Zn among rain, road sediments, and road runoff approximately meet the mass balance equation for all rainfall patterns. Five principal factors were selected for metal regression equation based on PCA, including rainfall, average rainfall intensity, antecedent dry periods, total suspended particles, and temperature. The established regression equations could be used to predict the effect of road runoff on receiving environments.
Afficher plus [+] Moins [-]Influence of enumeration time periods on analyzing colonization features and taxonomic relatedness of periphytic ciliate communities using an artificial substratum for marine bioassessment Texte intégral
2012
Zhang, Wei | Xu, Henglong | Jiang, Yong | Zhu, Mingzhuang | Al-Rasheid, Khaled A. S.
Colonization features and taxonomic relatedness measures of ciliate communities have been used as useful indicators for marine bioassessment. The influence of enumeration time periods on analyzing colonization features measures of periphytic ciliate communities was studied in coastal waters of the Yellow Sea, northern China, during the period of May–June 2010. Ciliated protozoan samples were collected at depths of 1 m using an artificial substratum and were analyzed with different enumeration schemes. The ciliate species were identified using living observation and silver impregnation. Data analyses were conducted using a range of multivariate statistical routines. Enumeration time periods represented a strong influence on analyzing both colonization and taxonomic relatedness features of periphytic ciliate communities, although no significant changes occurred in colonization patterns between two enumeration schemes (within 24 and 24–48 h after sampling). The delayed enumeration (within 24–48 h) may result in the species richness, individual abundance, colonization rate decreasing to standard errors of >10 % in samples with almost all colonization ages, and in the similarities of the communities being reduced to 11–38 %. However, the species biodiversity (e.g., species diversity and evenness, except species richness) and taxonomic relatedness (taxonomic diversity, taxonomic distinctness and average taxonomic distinctness, except variation in taxonomic distinctness) measures of periphytic ciliate communities were weakly sensitive to disturbance from the delayed enumeration, achieving standard errors of <10 and <5 % during the colonization periods, respectively. These results suggest that the enumeration should be completed as soon as possible within 24 h after sampling to analyze colonization and taxonomic relatedness features of periphytic ciliate communities, and that the species diversity and taxonomic distinctness measures can be used on a robust bioindicator with weak dependence on enumeration time limits for monitoring programs and ecological investigations in marine ecosystems.
Afficher plus [+] Moins [-]Modeling and optimization of reductive degradation of chloramphenicol in aqueous solution by zero-valent bimetallic nanoparticles Texte intégral
2012
Singh, Kunwar P. | Singh, Arun K. | Gupta, Shikha | Rai, Premanjali
PURPOSE: The present study aims to investigate the individual and combined effects of temperature, pH, zero-valent bimetallic nanoparticles (ZVBMNPs) dose, and chloramphenicol (CP) concentration on the reductive degradation of CP using ZVBMNPs in aqueous medium. METHOD: Iron–silver ZVBMNPs were synthesized. Batch experimental data were generated using a four-factor statistical experimental design. CP reduction by ZVBMNPs was optimized using the response surface modeling (RSM) and artificial neural network-genetic algorithm (ANN-GA) approaches. The RSM and ANN methodologies were also compared for their predictive and generalization abilities using the same training and validation data set. Reductive by-products of CP were identified using liquid chromatography-mass spectrometry technique. RESULTS: The optimized process variables (RSM and ANN-GA approaches) yielded CP reduction capacity of 57.37 and 57.10 mg g−1, respectively, as compared to the experimental value of 54.0 mg g−1 with un-optimized variables. The ANN-GA and RSM methodologies yielded comparable results and helped to achieve a higher reduction (>6%) of CP by the ZVBMNPs as compared to the experimental value. The root mean squared error, relative standard error of prediction and correlation coefficient between the measured and model-predicted values of response variable were 1.34, 3.79, and 0.964 for RSM and 0.03, 0.07, and 0.999 for ANN models for the training and 1.39, 3.47, and 0.996 for RSM and 1.25, 3.11, and 0.990 for ANN models for the validation set. CONCLUSION: Predictive and generalization abilities of both the RSM and ANN models were comparable. The synthesized ZVBMNPs may be used for an efficient reductive removal of CP from the water.
Afficher plus [+] Moins [-]Transition metal-modified zinc oxides for UV and visible light photocatalysis Texte intégral
2012
Bloh, J. Z. | Dillert, R. | Bahnemann, D. W.
In order to use photocatalysis with solar light, finding more active and especially visible light active photocatalysts is a very important challenge. Also, studies of these photocatalysts should employ a standardized test procedure so that their results can be accurately compared and evaluated with one another. A systematic study of transition metal-modified zinc oxide was conducted to determine whether they are suitable as visible light photocatalysts. The photocatalytic activity of ZnO modified with eight different transition metals (Cu, Co, Fe, Mn, Ni, Ru, Ti, Zr) in three different concentrations (0.01, 0.1, and 1 at.%) was investigated under irradiation with UV as well as with visible light. The employed activity test is the gas-phase degradation of acetaldehyde as described by the ISO standard 22197-2. The results suggest that the UV activity can be improved with almost any modification element and that there exists an optimal modification ratio at about 0.1 at.%. Additionally, Mn- and Ru-modified ZnO display visible light activity. Especially the Ru-modified ZnO is highly active and surpasses the visible light activity of all studied titania standards. These findings suggest that modified zinc oxides may be a viable alternative to titanium dioxide-based catalysts for visible light photocatalysis. Eventually, possible underlying mechanisms are proposed and discussed.
Afficher plus [+] Moins [-]Effect of factors on decolorization of azo dye methyl orange by oxone/natural sunlight in aqueous solution Texte intégral
2012
Liu, Qun | Zheng, Zheng | Yang, Xiaoying | Luo, Xingzhang | Zhang, Jibiao | Zheng, Binguo
PURPOSE: The oxone process for azo dye decolorization has drawbacks such as difficulties with reuse, risks of secondary pollution, and high costs associated with UV irradiation. This study aims to explore the use of oxone for decolorization in the absence of catalyst and under natural sunlight conditions (i.e., oxone/natural sunlight system) and evaluate the impacts of operating parameters (reagent dosage, initial methyl orange (MO) concentration, and initial pH) and coexisting substances (humic acid, NO 3 − , metal ions) on the system’s decolorization efficiency. METHODS: Four levels of operating parameters were configured under a Taguchi L16 orthogonal array design to examine their effects on decolorization efficiency. Fractional factional design was then used to derive the optimal combination of operating parameters, under which the effects of coexisting substances at various concentrations were examined. In addition, H2O2, CH3OH, and (CH3)3COH were used to derive the possible reaction mechanisms in the oxone/sunlight system, while ultrasonic power was used to shorten the reaction time. RESULTS: In the oxone/sunlight system, (1) the MO decolorization efficiency reaches 96.4% under the optimal operating conditions: initial concentration, 100 mg L−1; initial pH 6.04; dosage of reagent, 3 mmol L−1; and reaction time, 30 min. (2) Coexisting substances do not affect the overall decolorization efficiency. (3) The decolorization of MO in the oxone/sunlight system takes place mainly via oxidation by SO 4 [Symbol: see text]− . (4) Ultrasonic irradiation could remarkably accelerate the MO decolorization process. CONCLUSION: Effective for MO decolorization, the oxone/sunlight system improves over the traditional oxone process with advantages of lower costs and avoiding secondary pollution by catalyst.
Afficher plus [+] Moins [-]Toxicity test using medaka (Oryzias latipes) early fry and concentrated sample water as an index of aquatic habitat condition Texte intégral
2012
Yamashita, H. | Haribowo, R. | Sekine, M. | Oda, N. | Kanno, A. | Shimono, Y. | Shitao, W. | Higuchi, T. | Imai, T. | Yamamoto, K.
The aim of the present study was to show a relationship between toxicity of 100-fold concentrated water and aquatic habitat conditions. Environmental waters are 100-fold concentrated with solid-phase extraction. Medaka early fry was exposed in these waters for 48 h. The number of death and disorder was counted at 1, 2, 3, 6, 12, 24, and 48 h; toxicity was expressed using inverse median effect time and median lethal time (ET ₅₀ ⁻¹ , LT ₅₀ ⁻¹ ). Average score per taxon (ASPT) for benthic animals and Index of Biotic Integrity (IBI) for fish were applied as indices of aquatic habitat conditions. The results of toxicity test were compared using ASPT and IBI. The different levels of toxicity were detected in the seawater of Japan. At the Husino River area, toxicity cannot be detected. In rivers, high toxicity appeared at urban districts without sewerage. By Spearman coefficient, the relationship between toxicity and high biochemical oxygen demand (BOD) were obtained. BOD household wastewater contains hydrophobic toxic matters; otherwise, seawater in industrial area does not show clear relationship between toxicity and chemical oxygen demand. Gas chromatography to mass spectrometry simultaneous analysis database may give an answer for the source of toxicity, but further test is required. Ratio of clear stream benthic animal sharply decreased over 0.25 of LT ₅₀ ⁻¹ or 0.5 of ET ₅₀ ⁻¹ . Tolerant fish becomes dominant over 0.3 of LT ₅₀ ⁻¹ or 0.5–1.0 of ET ₅₀ ⁻¹ . By Pearson product–moment correlation coefficient, correlation coefficient between toxicity and ASPT was obtained at −0.773 (ET ₅₀ ⁻¹ ) and −0.742 (LT ₅₀ ⁻¹ ) at 1 % level of significance with a high negative correlation. Toxicity (LT ₅₀ ⁻¹ ) has strong correlation with the ratio of tolerant species. By Pearson product–moment correlation coefficient, correlation coefficient between toxicity and IBI obtained were −0.155 (ET ₅₀ ⁻¹ ) and −0.190 (LT ₅₀ ⁻¹ ) at 1 % level of significance and has a low or no correlation between toxicity and IBI. Even with low toxic environmental waters, toxicity test using 100-fold concentrated and medaka early fly could detect acute toxicity. The detected toxicity seemed to limit the inhabiting aquatic species in the water body.
Afficher plus [+] Moins [-]Isolation of a novel Pseudomonas sp from soil that can efficiently degrade polyethylene succinate Texte intégral
2012
Tribedi, Prosun | Sarkar, Subhasis | Mukherjee, Koushik | Sil, Alok K.
PURPOSE: Polyethylene succinate (PES) is a biodegradable synthetic polymer and therefore widely used as a base material in plastic industry to circumvent the environmental problems related with the non-biodegradability of other polymers like polyethylene. Till date only few organisms have been reported to have the ability to degrade PES. Therefore for better management of PES-related environmental waste, the present study is targeted towards isolating mesophilic organism(s) capable of more efficient degradation of PES. RESULTS: Strain AKS2 was isolated from soil based on survival on a selection plate wherein PES was used as sole carbon source. Ribotyping and biochemical tests revealed that AKS2 is a new strain of Pseudomonas. Scanning electron and atomic force microscopic analysis of the PES films obtained after incubation with AKS2 confirmed PES-degradation ability of AKS2, wherein an alteration in surface topology was observed. The kinetics of PES weight loss showed that AKS2 degrades PES maximally during its logarithmic growth phase at a rate of 1.65 mg/day. This degradation is mediated by esterase activity and may also involve cell-surface hydrophobicity. It has also been observed that AKS2 is able to degrade PES considerably even in the presence of glucose, which is likely to increase the bioremediation potential of this isolate. CONCLUSION: A new strain of Pseudomonas has been isolated from soil that is able to adhere to PES and degrade this polymer efficiently. This organism has the potential to be implemented as a useful tool for bioremediation of PES-derived materials.
Afficher plus [+] Moins [-]Kinetics and equilibrium properties of the biosorption of Cu2+ by algae Texte intégral
2012
Wang, Qiong | Peckenham, John | Pinto, Jamie | Patterson, Howard
The purpose of this study was to examine the kinetics and equilibrium properties of freshwater algae with Cu2+. This was a model system to explore using algae as biosensors for water quality. Methods included making luminescence measurements (fluorescence) and copper ion-selective electrode (CuISE) measurements vs. time to obtain kinetic data. Results were analyzed using a pseudo-first-order model to calculate the rate constants of Cu2+ uptake by algae: k p(Cu–algae) = 0.0025 ± 0.0006 s−1 by CuISE and k p(Cu–algae) = 0.0034 ± 0.0011 s−1 by luminescence. The binding constant of Cu–algae, K Cu–algae, was 1.62 ± 0.07 × 107 M−1. Fluorescence results analyzed using the Stern–Volmer relationship indicate that algae have two types of binding sites of which only one appears to affect quenching. The fluorescence-based method was found to be able to detect the reaction of algae with Cu2+ quickly and at a detection limit of 0.1 mg L−1.
Afficher plus [+] Moins [-]Removal of genotoxicity in chlorinated secondary effluent of a domestic wastewater treatment plant during dechlorination Texte intégral
2012
Wu, Qian-Yuan | Li, Yi | Hu, Hong-Ying | Ding, Ya-Nan | Huang, Huang | Zhao, Feng-Yun
PURPOSE: Dechlorination with tetravalent sulfur is widely used in wastewater treatment processes after chlorination. Dechlorination can remove certain genotoxic disinfection by-products (DBPs). However, the reactions occurring during dechlorination of chlorinated secondary effluent and their genotoxic chemicals are still very complex, and the related genotoxicity changes remain unknown. Therefore, the effects of dechlorination on genotoxicity in secondary effluent and its fractions and typical genotoxic chemical after chlorination were evaluated. METHODS: The dissolved organic matter in the secondary effluent sample was separated into four fractions with XAD-8 resin. Genotoxicity of secondary effluent and its fractions was evaluated by SOS/umu test, an ISO standard method. The concentration of typical genotoxic chemical named ofloxacin was determined by liquid chromatography with a mass spectrometer and a fluorescence detector. RESULTS: Dechlorination with the addition of Na2SO3 notably decreased the genotoxicity in the chlorinated secondary effluent, especially in the presence of high ammonia nitrogen concentration in the sample before chlorination. The Na2SO3 addition significantly decreased the genotoxicity of the secondary effluent and its genotoxic ofloxacin prior to chlorination. The genotoxicity in the fractions containing hydrophobic acids (HOA) increased after chlorination, while addition of Na2SO3 decreased the genotoxicity induced by chlorination. Tryptophan found in HOA exhibited genotoxicity after chlorination, while dechlorination decreased the genotoxicity in chlorinated tryptophan induced by DBPs. CONCLUSIONS: Dechlorination was found to decrease the genotoxicity of chlorinated secondary effluent. The decrease was associated with the reduction of genotoxicity in genotoxic chemicals in secondary effluent prior to chlorination and DBPs.
Afficher plus [+] Moins [-]Heavy metal (Cd, Cr, Cu, Hg, Pb, Zn) concentrations in seven fish species in relation to fish size and location along the Yangtze River Texte intégral
2012
Yi, Yu-Jun | Zhang, Shang-Hong
PURPOSE: The objective of this paper is to assess the regulation of the accumulation of heavy metals in the aquatic environment and different fish species. METHODS: Water and fish samples were collected from upper to lower reaches of the Yangtze River. The heavy metal (Cd, Cr, Cu, Hg, Pb, Zn) concentrations in the muscle tissue of seven fishes were measured. Additionally, the relationships between heavy metal concentrations in fish tissue and fish size (length and weight), condition factor, water layer distribution, and trophic level were investigated. RESULTS: Metal concentrations (milligrams per kilogram wet weight) were found to be distributed differently among different fish species. The highest concentrations of Cu (1.22 mg/kg) and Zn (7.55 mg/kg) were measured in Pelteobagrus fulvidraco, the highest concentrations of Cd (0.115 mg/kg) and Hg (0.0304 mg/kg) were measured in Silurus asotus, and the highest concentrations of Pb (0.811 mg/kg) and Cr (0.239 mg/kg) were measured in Carassius auratus and Cyprinus carpio. A positive relationship was found between fish size and metal level in most cases. The variance of the relationships may be the result of differences in habitat, swimming behavior, and metabolic activity. In this study, fishes living in the lower water layer and river bottom had higher metals concentrations than in upper and middle layers. Benthic carnivorous and euryphagous fish had higher metals concentrations than phytoplankton and herbivorous fish. Generally, fish caught from the lower reach had higher metals concentrations than those from the upper reach. CONCLUSIONS: Cadmium and lead concentrations in several fishes exceeded the permissible food consumption limits, this should be considered to be an important warning signal.
Afficher plus [+] Moins [-]