Affiner votre recherche
Résultats 1451-1460 de 3,201
Potato Starch as a Coagulant for Dye Removal from Textile Wastewater
2015
Zafar, Muhammad Shahzad | Tausif, Muhammad | Mohsin, Muhammad | Ahmad, Syed Waqas | Zia-ul-Haq, Muhammad
Wastewater from textile industry contains a number of pollutants which are hazardous in nature. The direct discharge of the wastewater into the environment affects its ecological status by causing various undesirable changes. As environmental fortification becomes a global anxiety, industries are finding novel solutions for mounting low-cost and environmental-friendly technologies for the dye removal from the waste. The presence of the dyes hinders sunlight penetration and disturbs the ecosystem of water. However, the treatment of wastewater with biodegradable polymer attains a vital importance as they are environmental friendly. The main objective of the work was to make an effort to develop a feasible process for the removal of dyes/color from the textile wastewater by using potato starch, which is a plant-based bio-polymer. A three-level, full-factorial design was selected, and experiments were conducted using a jar test apparatus. The main effects and interactions of dosage, pH, and temperature on the percentage color removal were analyzed. Reduction in color was analyzed using UV-2800 spectrophotometer. A three-way significant interaction was observed. However, dosage is found to be the most important parameter for dye removal using potato starch.
Afficher plus [+] Moins [-]Impacts of Prolonged Drought on Salt Accumulation in the Root Zone Due to Recycled Water Irrigation
2015
Rahman, Muhammad Muhitur | Hagare, Dharma | Maheshwari, Basant | Dillon, Peter
Continuous use of recycled water (treated sewage effluent) over a long period of time may lead to the accumulation of salt in the root zone soil. This is due to the relatively higher levels of salt content in the recycled water compared to surface water. In this study, a laboratory column study was carried out to validate the HYDRUS 1D model under no rain condition. During the validation, the relative error and the % bias between observed and simulated soil water electrical conductivity (ECSW) were found to be low and varied in a range of 5–10 and 5–6 %, respectively. The validated model was then used to predict long-term (5 years) salt accumulation under drought conditions. The analysis of model predicted salt values showed a cyclical pattern of salt accumulation in the root zone, and this related to the variation in rainfall and evapotranspiration. The mean root zone ECSWin the 5th year was found to be within the highest salinity tolerance threshold for pasture (11.2 dS/m); however, the maximum root zone ECSWwas found to be about 63 % more than the threshold. Irrespective of seasons, in 5 years time, ECSWat the depth of 1.0 m increased from 3.0 to 7.0 dS/m, which may pose a salinity risk to the groundwater table if there is a perched water table at a depth <1 m below the field surface. One of the management options to minimise long-term salt accumulation was also examined. By reducing the salt in recycled water by 50 %, it was possible to keep the ECₛwwithin the recommended threshold values. Overall, the methodology developed in this study can be used to identify appropriate management options for sustainable recycled water irrigation.
Afficher plus [+] Moins [-]Effect on the Photo-production of Dissolved Gaseous Mercury in Post-desulfurized Seawater Discharged from a Coal-Fired Power Plant
2015
Sun, Lumin | Lu, Bingyan | Yuan, Dongxing | Xue, Cheng
A high concentration of dissolved gaseous mercury (DGM) was detected in post-desulfurized waste seawater, which was discharged from a coal-fired power plant equipped with a seawater desulfurization system and which was located in a coastal area. A large amount of DGM was converted from other forms of mercury during transformation processes, such as photo-reduction. The present study targeted the photo-reduction of mercury and the effects of various environmental parameters on DGM production in the post-desulfurized seawater discharged. The results suggested that the photo-reduction of mercury was significantly induced under UV radiation, especially with UVB. The particulate mercury on suspended solids was easily photo-reduced and considered as an important source of DGM. It was confirmed that the suspended solids in post-desulfurized seawater could enhance the reduction process of mercury under UV radiation. The pseudo-first-order rate constants of DGM production, which were determined through the concentration gradient and trial methods, were 1.39 × 10⁻³ min⁻¹and 1.45 × 10⁻³ min⁻¹, respectively. The values showed no significant difference and were both much higher than the reported results, indicating that the photo-reduction of mercury in post-desulfurized seawater deserved more attention. In addition, the initial mercury level was observed when mixing the post-desulfurized seawater with fresh seawater, and this suggested that a significant amount of initial mercury would be produced when the post-desulfurized seawater was discharged into the adjacent sea area and thus becomes another considerable source of DGM.
Afficher plus [+] Moins [-]Assessment of palladium footprint from road traffic in two highway environments
2015
Clement, N. | Muresan, B. | Hedde, M. | François, D.
Palladium (Pd) is an emerging eco-toxic pollutant from vehicle catalytic converters, emitted worldwide for more than two decades. Nowadays, the spatial extent of Pd fallout is growing along roads, but its subsequent fate in neighboring terrestrial ecosystems has not been extensively addressed yet. Two sites representative of contrasted natural environments (field, forest) but located under similar ambient conditions were selected to isolate and analyze the specific impact of vehicular Pd, along highway A71, France. Pd impregnation was assessed along 200-m-long transects perpendicular to the highway. Contents were measured in soils, earthworms, plant communities of the right of way (ROW), and the neighboring field (crop weeds), as well as in a moss, and bramble and ivy leaves in the forest. The direct impact of Pd fallouts appears to be confined in the grassy verge of the highway: ROW soils ([Pd] = 52–65 ng g⁻¹), earthworms ([Pd] = 18–38 ng g⁻¹), and plant community ([Pd] = 10–23 ng g⁻¹). Pd footprint is pointed out by the accumulation index calculated for earthworms and plant communities even though transfer coefficients indicate the absence of bioaccumulation (TCs < 1). An indirect longer range transfer of Pd is identified, induced by hydric transport of organic matter.
Afficher plus [+] Moins [-]Accumulation of Platinum Nanoparticles by Sinapis alba and Lepidium sativum Plants
2015
Nanoparticles (NPs) are commonly used, and concerns about their possible adverse effects are being voiced as well. However, little is known about the fates of NPs released to the environment. The aim of the study was to (i) evaluate the ability of Sinapis alba and Lepidium sativum plants to take up platinum nanoparticles (Pt-NPs) and translocate them to aboveground organs, (ii) compare the accumulation efficiency of different forms of platinum and (iii) identify the forms in which platinum is stored in plant tissues. Plants were cultivated on medium supplemented with different concentrations of Pt-NPs and [Pt(NH₃)₄](NO₃)₂. Platinum content in plants was determined using inductively coupled plasma mass spectrometry. For the identification of the presence of Pt-NPs in plant tissues, gamma spectrometry following iron irradiation was applied. It was found that L. sativum and S. alba are tolerant to applied concentrations of Pt-NPs and have an ability to take up platinum from the medium and translocate it to aboveground organs. The highest concentration of platinum was observed in plant roots (reaching 8.7 g kg⁻¹for S. alba). We tentatively conclude that platinum is accumulated as nanoparticles. The obtained results suggest future application of plants for phytoremediation and recovery of noble metal nanoparticles.
Afficher plus [+] Moins [-]Evaluation of the Performance of Different Anodes in the Electrochemical Oxidation of Ammonia
2015
He, Shi-Long | Huang, Qing | Zhang, Yong | Nie, Yu-Lun
Three commercial electrodes, Ta-Ir/TiO₂, Rh-Ir/TiO₂, and PbO₂/TiO₂, were used as electrochemical anodes, and their performance was evaluated by the electrochemical oxidation of ammonia at neutral pH in a continuous electrochemical quadrangular reactor. Based on the cyclic voltammetry scans and volt-ampere relation analysis, in direct oxidation, the oxygen evolution from H₂O₂decomposition was completely inhibited, and more•OH radicals could be then generated over PbO₂/TiO₂and in the presence of powder activated carbon (PAC). PbO₂/TiO₂can be indicated as an appropriate for the direct electrooxidation of ammonia in an unpacked bed reactor. While the efficiency for direct oxidation of ammonia was similar for the three anodes in a PAC packed reactor due to the presence of PAC could avoid short circuit and enhance electric efficiency. In indirect oxidation mediated by active free chlorine, Rh-Ir/TiO₂was the most effective in ammonia removal when chloride was present in the reaction system, and the disappeared ammonia was mainly transferred to N₂, and only a small part was converted into nitrate (there was no nitrite detected during the reaction). The results indicated that Rh-Ir/TiO₂had the highest oxidation capability for ammonia compared with Ta-Ir/TiO₂and PbO₂/TiO₂. Hence, Rh-Ir/TiO₂based on a PAC packed bed reactor provides an alternative for the treatment of ammonia wastewater with high chloride concentration.
Afficher plus [+] Moins [-]Investigating the Reduction of Human Adenovirus (HAdV) and Human Polyomavirus (HPyV) in a Sewage Treatment Plant with a Polishing Pond as a Tertiary Treatment
2015
Jurzik, Lars | Hamza, Ibrahim Ahmed | Wilhelm, Michael
Enteric viruses enter surface waters through discharge of sewage treatment plants. They have a high environmental resistance and persistence and have low infectious doses. The aim of this study was to investigate the efficiency of polishing pond in the removal of viruses and bacteria. The samples were taken approximately once a week at the influent of secondary treatment (n = 39), effluent of secondary treatment (n = 39), and polishing pond (tertiary treatment, n = 29). Human adenoviruses (HAdV) were detected in 82–100 % of wastewater samples, whereas 62–79 % of the samples were positive for human polyomavirus (HPyV). The median concentrations ranged from 6.8 × 10³ genome equivalents/l (HAdV) to 6.0 × 10³ genome equivalents/l (HPyV). The concentration of HAdV and HPyV did not change significantly during the wastewater treatment. For somatic coliphages and bacteria an overall reduction of 1.84–2.65 log₁₀ has been detected. Based on the data collected, this type of tertiary treatment achieved a significant reduction in bacteria and phages, but not for viruses.
Afficher plus [+] Moins [-]Kinetic modeling of the photocatalytic degradation of clofibric acid in a slurry reactor
2015
A kinetic study of the photocatalytic degradation of the pharmaceutical clofibric acid is presented. Experiments were carried out under UV radiation employing titanium dioxide in water suspension. The main reaction intermediates were identified and quantified. Intrinsic expressions to represent the kinetics of clofibric acid and the main intermediates were derived. The modeling of the radiation field in the reactor was carried out by Monte Carlo simulation. Experimental runs were performed by varying the catalyst concentration and the incident radiation. Kinetic parameters were estimated from the experiments by applying a non-linear regression procedure. Good agreement was obtained between model predictions and experimental data, with an error of 5.9 % in the estimations of the primary pollutant concentration.
Afficher plus [+] Moins [-]Impact of Floods and Their Frequency on Content and Distribution of Risk Elements in Alluvial Soils
2015
Bednářová, Zdenka | Komprdová, Klára | Kalábová, Tereza | Sáňka, Milan
The aim of this study was to compare the pollution levels of risk elements in flooded and non-flooded alluvial soils as a function of inundation frequency and river distance, depth of soil horizon, and pollution origin. Totally, 43 soil profiles of flooded and non-flooded soils were sampled in two layers (topsoil and subsoil). The total contents of As, Cd, Co, Cr, Cu, Mo, Ni, Pb, V, and Zn were measured and grouped according to the assumed geogenic or anthropogenic origin. Flooded soils were classified according to inundation stage/river distance. Concerning the depth gradient, it can be concluded that the content of anthropogenic risk elements decreased with the depth, while geogenic risk elements revealed no trend. The distance from the river had no influence on the distribution of anthropogenic risk elements in soil. On the contrary, geogenic risk elements showed increasing concentrations with increasing distance. These results indicate that frequency of floods has no influence on the risk elements distribution in soil. The process of sedimentation seems to be the main factor influencing the level of pollution, it differs between groups of anthropogenic and geogenic risk elements. The result of this countrywide study shows higher levels of soil contamination in flooded areas even without significant point sources of pollution, than in non-flooded areas in standard agricultural conditions.
Afficher plus [+] Moins [-]Certain Phase I and II Enzymes as Toxicity Biomarker: An Overview
2015
Hassan, Iftekhar | Jabir, Nasimudeen R. | Ahmad, Saheem | Shāh, ʻĀliyah | Tabrez, Shams
Tremendous surge in the industrialization and infrastructure development worldwide have led to a significant rise in environmental pollutants in the last 2–3 decades. Pollutants in the natural environment consist of highly diversified and complex mixtures. A single biomarker cannot be used to assess a complete identification of environmental pollutants. In this context, it is highly recommended by environmental scientists to evaluate a set of complementary biomarkers for the complete assessment of toxic burden of complex environmental pollutants in the exposed organisms. Moreover, a multiple biomarker approach for the stress assessment is believed to have high sensitivity and could be done in comparatively lesser measuring time. The present article focuses on the viability of usage of xenobiotic detoxification enzymes viz. phase I and II as the toxicity biomarkers. As far as our knowledge goes, we are for the first time reporting phase I and phase II enzymes together as potential toxicity biomarkers in a single article.
Afficher plus [+] Moins [-]