Affiner votre recherche
Résultats 1461-1470 de 6,473
Monitoring of ammonia in marine waters using a passive sampler with biofouling resistance and neural network-based calibration
2020
O’Connor Šraj, Lenka | Almeida, Maria Inês G.S. | Sharp, Simon M. | McKelvie, Ian D. | Morrison, Richard | Kolev, Spas D.
A biofouling resistant passive sampler for ammonia, where the semi-permeable barrier is a microporous hydrophobic gas-diffusion membrane, has been developed for the first time and successfully applied to determine the time-weighted average concentration of ammonia in estuarine and coastal waters for 7 days. Strategies to control biofouling of the membrane were investigated by covering it with either a copper mesh or a silver nanoparticle functionalised cotton mesh, with the former approach showing better performance. The effects of temperature, pH and salinity on the accumulation of ammonia in the newly developed passive sampler were studied and the first two parameters were found to influence it significantly. A universal calibration model for the passive sampler was developed using the Group Method Data Handling algorithm based on seawater samples spiked with known concentrations of total ammonia under conditions ranging from 10 to 30 °C, pH 7.8 to 8.2 and salinity 20 to 35. The newly developed passive sampler is affordable, user-friendly, reusable, sensitive, and can be used to detect concentrations lower than the recently proposed guideline value of 160 μg total NH₃–N L⁻¹, for a 99% species protection level, with the lowest concentration measured at 17 nM molecular NH₃ (i.e., 8 μg total NH₃–N L⁻¹ at pH 8.0 and 20 °C). It was deployed at four field sites in the coastal waters of Nerm (Port Phillip Bay), Victoria, Australia. Good agreement was found between molecular ammonia concentrations obtained with passive and discrete grab sampling methods (relative difference, - 12% to - 19%).
Afficher plus [+] Moins [-]A new pseudo-partition coefficient based on a weather-adjusted multicomponent model for mushroom uptake of pesticides from soil
2020
Li, Zijian
In this study, a weather-based multicomponent model was developed based on the unique biostructures and metabolic processes of mushrooms to evaluate their uptake of pesticides from soils, and the effects of temperature and relative humidity on the bioaccumulation of pesticides in mushrooms was comprehensively quantified. Additionally, a new pseudo-partition coefficient between mushrooms and soils was introduced to assess the impacts of different physiochemical properties on the pesticide uptake process. The results indicate that, in general, the pseudo-partition coefficient increases as the relative humidity increases for both the air and soil according to Fick’s law of gas diffusion and the spatial competition of molecules, respectively. Meanwhile, the effect of temperature on the pesticide bioaccumulation process is more complex. For most pesticides (e.g., atrazine), the pseudo-partition coefficient that was computed from the transpiration component had a maximum value at a specific temperature due to the temperature dependency of the transpiration and biodegradation processes. For some pesticides (e.g., ethoprophos), the pseudo-partition coefficient of the air-deposition component had a maximum value at a certain temperature that was caused by the ratio of the soil–air internal transfer energy and degradation activation energy of the pesticide. It was also concluded that for relatively low-volatility pesticides, transpiration dominated the bioaccumulation process; this was mainly determined from the pesticide water solubility. For nonbiodegradable pesticides (e.g., lindane), the computed coefficient values were relatively low due to their insolubility in water, which inhibits bioaccumulation in mushrooms and is one of the main reasons for their long-term persistence in soils.
Afficher plus [+] Moins [-]Respirable inorganic fibers dispersed in air and settled in human lung samples: Assessment of their nature, source, and concentration in a NW Italy large city
2020
Capella, Silvana | Bellis, Donata | Fioretti, Elena | Marinelli, Roberto | Belluso, Elena
The present investigation represents a new approach useful to evaluate the general population risk correlated with environmental exposure to air dispersed inorganic fibers. The used method is based on the evaluation of the respirable inorganic fibers both air dispersed in a big city and contained in lungs of the general population following their respiration. Moreover, these data allow to identify the sources of dispersion (anthropogenic or natural) in air of the inorganic fibers and therefore to apply strategies to improve air quality. To describe this approach, we investigated air samples from a big city in NW Italy and lung inorganic burden of people here lived. This paper reports the data of the airborne inorganic fibers detected in two sampling campaign (2014 and 2016), in 24 districts of Torino (Piemonte - NW Italy), and in some autoptic lungs of general population lived here. The airborne fibers (collected on mixed-cellulose esters membrane) were characterized by SEMEDS. The identified inorganic fiber species were assigned to 5 classes, one of these including 2 types of asbestos. These last are grouped as tremolite/actinolite asbestos. They are dispersed from natural sources (i.e. certain kinds of rocks outcropping in the city surrounding areas). In no-one of the 24 districts of Torino their concentration highlighted a situation of asbestos pollution in place.A correlation with inorganic fibers (collected on mixed-cellulose esters membrane and characterized by SEM-EDS) detected in lung tissue samples of 10 subjects lived in Torino all their life and without professional exposure to asbestos were attempted. The only types of fibers identified as asbestos are tremolite/actinolite asbestos, and they match those detected in air sampling. The number of fibers per 1 g of tissue dry weight is lower than the quantities reported as indicative of significant asbestos exposure. We observed interesting gender differences.
Afficher plus [+] Moins [-]Methane emissions from oil and gas platforms in the Bohai Sea, China
2020
Zang, Kunpeng | Zhang, Gen | Wang, Juying
Although oil and gas explorations contribute to atmospheric methane (CH₄) emissions, their impact and influence along the shelf seas of China remain poorly understood. From 2012 to 2017, we conducted four ship-based surveys of CH₄ in the seawater column and boundary layer of the Bohai Sea, China, and further measured CO₂ and several meteorological parameters. The average observed CH₄ mixing ratios in the boundary layer and its concentrations in seawater column were 1950 ± 46 ppb in November 2012 (dissolved CH₄ was not observed in this survey), 2222 ± 109 ppb and 13.0 ± 5.9 nmol/L in August 2014, 2014 ± 20 ppb and 5.4 ± 1.4 nmol/L in February 2017, and 1958 ± 25 ppb and 5.3 ± 3.8 nmol/L in May 2017, respectively. The results demonstrated that the CH₄ emissions from the oil and gas platforms accounted for approximately 72.5 ± 27.0% of the increase in the background atmospheric CH₄ in the local area. The remaining emissions were attributed to land–sea air mass transportation. Conversely, the influence of the air–sea exchange was negligible, measuring within the 10⁻³ ppb range. For carbon balance calibration, the mean flaring efficiency of the oil-associated gas based on the enhancement of CO₂ (ΔCO₂) and enhancement sum of CO₂ and CH₄ (ΔCO₂ + ΔCH₄) was 98.5 ± 0.5%. Furthermore, the CH₄ emission rate from the oil and gas platforms was 0.026 ± 0.017 Tg/year, which was approximately 7.2 times greater than the sea-to-air CH₄ flux over the entire Bohai Sea area. Thus, oil and gas platforms must be recognized as important artificial hotspot sources of atmospheric CH₄ in the Bohai Sea.
Afficher plus [+] Moins [-]Polycyclic aromatic compounds (PACs) in the Canadian environment: The challenges of ecological risk assessments
2020
Hodson, P.V. | Wallace, S.J. | de Solla, S.R. | Head, S.J. | Hepditch, S.L.J. | Parrott, J.L. | Thomas, P.J. | Berthiaume, A. | Langlois, V.S.
Ecological risk assessments (ERAs) of polycyclic aromatic compounds (PACs), as single congeners or in mixtures, present technical challenges that raise concerns about their accuracy and validity for Canadian environments. Of more than 100,000 possible PAC structures, the toxicity of fewer than 1% have been tested as individual compounds, limiting the assessment of complex mixtures. Because of the diversity in modes of PAC action, the additivity of mixtures cannot be assumed, and mixture compositions change rapidly with weathering. In vertebrates, PACs are rapidly oxygenated by cytochrome P450 enzymes, often to metabolites that are more toxic than the parent compound. The ability to predict the ecological fate, distribution and effects of PACs is limited by toxicity data derived from tests of a few responses with a limited array of test species, under optimal laboratory conditions. Although several models are available to predict PAC toxicity and rank species sensitivity, they were developed with data biased by test methods, and the reported toxicities of many PACs exceed their solubility limits. As a result, Canadian Environmental Quality Guidelines for a few individual PACs provide little support for ERAs of complex mixtures in emissions and at contaminated sites. These issues are illustrated by reviews of three case studies of PAC-contaminated sites relevant to Canadian ecosystems. Interactions among ecosystem characteristics, the behaviour, fate and distribution of PACs, and non-chemical stresses on PAC-exposed species prevented clear associations between cause and effect. The uncertainties of ERAs can only be reduced by estimating the toxicity of a wider array of PACs to species typical of Canada’s diverse geography and environmental conditions. Improvements are needed to models that predict toxicity, and more field studies of contaminated sites in Canada are needed to understand the ecological effects of PAC mixtures.
Afficher plus [+] Moins [-]Environmental and human health risks of arsenic in gold mining areas in the eastern Amazon
2020
Souza Neto, Hamilton Ferreira de | Pereira, Wendel Valter da Silveira | Dias, Yan Nunes | Souza, Edna Santos de | Teixeira, Renato Alves | Lima, Mauricio Willians de | Ramos, Silvio Junio | Amarante, Cristine Bastos do | Fernandes, Antônio Rodrigues
Knowledge of arsenic (As) levels in gold (Au) mining areas in the Amazon is critical for determining environmental risks and the health of the local population, mainly because this region has the largest mineral potential in Brazil and one of the largest in the world. The objective of this study was to assess the environmental and human health risks of As in tailings from Au exploration in the eastern Amazon. Samples were collected from soils and tailings from different exploration forms from 25 points, and the total concentration, pollution indexes and human health risk were determined. Concentrations of As were very high in all exploration areas, especially in tailings, whose maximum value reached 10,000 mg kg⁻¹, far above the investigation value established by the Brazilian National Council of the Environment, characterizing a polluted area with high environmental risk. Exposure based on the daily intake of As demonstrated a high health risk for children and adults, whose non-carcinogenic risk indexes of 17.8, extremely above the acceptable limit (1.0) established by the United States Environmental Protection Agency. High levels of As in reactive fractions in underground, cyanidation, and colluvium mining areas, as well as extremely high gastric and intestinal bioaccessibility were found, suggesting that high levels may be absorbed by the local population. The results show that the study area is highly polluted through Au mining activities, putting the environment and population health at risk, and that there is an urgent need for intervention by the environmental control agencies for remediation.
Afficher plus [+] Moins [-]Microplastic pollution research methodologies, abundance, characteristics and risk assessments for aquatic biota in China
2020
Fu, Zhilu | Chen, Guanglong | Wang, Wenjing | Wang, Jun
The widespread presence of microplastics in global aquatic ecosystems has aroused growing concern about the potential impacts of microplastics on aquatic biota. In marine and freshwater environments, microplastics are distributed pervasively within water bodies from the upper water column to the bottom layer, making them available to a large variety of aquatic organisms that inhabit different locations. The ingestion of microplastic particles may cause harm to aquatic organisms. Although China’s aquatic environments have been seriously polluted by microplastics, the impacts of microplastics on aquatic biota remain to be elucidated. This review summarizes the current state of knowledge about microplastic pollution in aquatic biota in China; specifically, the concentration and characteristics of microplastic particles in aquatic organisms from both seawater and freshwater environments are discussed. The results showed that various aquatic organisms in China have been found to consume microplastics. The average number of microplastic pieces discovered in biota ranged from 0.07 particles to 164 particles per individual in different organisms. The most frequently observed colors of microplastics detected in biota were blue and transparent, and the detected microplastics mainly consisted of fibers. In addition, the impacts of microplastics on aquatic organisms, including physical impacts, chemical impacts, the trophic transfer of microplastics and the potential risks to humans, were discussed. Finally, knowledge gaps were identified in order to guide future studies.
Afficher plus [+] Moins [-]Efficient biodegradation of DEHP by CM9 consortium and shifts in the bacterial community structure during bioremediation of contaminated soil
2020
Bai, Naling | Li, Shuangxi | Zhang, Juanqin | Zhang, Hanlin | Zhang, Haiyun | Zheng, Xianqing | Lv, Weiguang
Di(2-ethylhexyl) phthalate (DEHP), the most extensively used plasticizer in plastic formulations, is categorized as a priority environmental contaminant with carcinogenic, teratogenic, and mutagenic toxicities. Many isolated microorganisms exhibit outstanding performance as pure cultures in the laboratory but are unable to cope with harsh environmental conditions in the field. In the present study, a microbial consortium (CM9) with efficient functionality was isolated from contaminated farmland soil. CM9 could consistently degrade 94.85% and 100.00% of DEHP (1000 mg/L) within 24 h and 72 h, respectively, a higher efficiency than those of other reported pure and mixed microorganism cultures. The degradation efficiencies of DEHP and di-n-butyl phthalate were significantly higher than those of dimethyl phthalate and diethyl phthalate (p < 0.05). The primary members of the CM9 consortium were identified as Rhodococcus, Niabella, Sphingopyxis, Achromobacter, Tahibacter, and Xenophilus. The degradation pathway was hypothesized to include both de-esterification and β-oxidation. In contaminated soil, bioaugmentation with CM9 and biochar markedly enhanced the DEHP removal rate to 87.53% within 42 d, compared to that observed by the indigenous microbes (49.31%) (p < 0.05). During simulated bioaugmentation, the dominant genera in the CM9 consortium changed significantly over time, indicating their high adaptability to soil conditions and contribution to DEHP degradation. Rhodococcus, Pigmentiphaga and Sphingopyxis sharply decreased, whereas Tahibacter, Terrimonas, Niabella, Unclassified_f_Caulobacteraceae, and Allorhizobium-Neorhizobium-Pararhizobium-Rhizobium showed considerable increases. These results provide a theoretical framework for the development of in situ bioremediation of phthalate (PAE)-contaminated soil by composite microbial inocula.
Afficher plus [+] Moins [-]Sulforaphane prevents chromium-induced lung injury in rats via activation of the Akt/GSK-3β/Fyn pathway
2020
Lv, Yueying | Jiang, Huijie | Li, Siyu | Han, Bing | Liu, Yan | Yang, Daqian | Li, Jiayi | Yang, Qingyue | Wu, Pengfei | Zhang, Zhigang
Chromium (Cr) is an internationally recognized carcinogenic hazard that causes serious pulmonary toxicity. However, Cr-induced pulmonary toxicity lacks effective treatment to date. Sulforaphane (SFN), a well-known organosulfur compound, has gained increasing attention because of its unique biological function. This study investigates if SFN could decrease K₂Cr₂O₇-induced pulmonary toxicity and a potential mechanism involved using a rat 35-day Cr-induced pulmonary toxicity model and the mouse alveolar type II epithelial cell line (MLE-12). The results showed that SFN prevented Cr-induced oxidative stress, histopathological lesions, inflammation, apoptosis, and changes in protein kinase B (Akt) and glycogen synthase kinase 3 beta (GSK-3β) levels in vivo and in vitro. However, SFN can not play the protective effect against K₂Cr₂O₇-induced cell injury after treating by an Akt-specific inhibitor (MK-2206 2HCl) in MLE-12 cells. Furthermore, SFN increased the expression of nuclear factor-E2-related factor-2 (Nrf2) phase II detoxification enzymes. Collectively, this study demonstrates that SFN prevents K₂Cr₂O₇-induced lung toxicity in rats through enhancing Nrf2-mediated exogenous antioxidant defenses via activation of the Akt/GSK-3β/Fyn signaling pathway. SFN may be a novel natural substance to cure Cr-induced lung toxicity.
Afficher plus [+] Moins [-]The impacts of intensive mining on terrestrial and aquatic ecosystems: A case of sediment pollution and calcium decline in cool temperate Tasmania, Australia
2020
Beck, K.K. | Mariani, M. | Fletcher, M.-S. | Schneider, L. | Aquino-López, M.A. | Gadd, P.S. | Heijnis, H. | Saunders, K.M. | Zawadzki, A.
Mining causes extensive damage to aquatic ecosystems via acidification, heavy metal pollution, sediment loading, and Ca decline. Yet little is known about the effects of mining on freshwater systems in the Southern Hemisphere. A case in point is the region of western Tasmania, Australia, an area extensively mined in the 19th century, resulting in severe environmental contamination. In order to assess the impacts of mining on aquatic ecosystems in this region, we present a multiproxy investigation of the lacustrine sediments from Owen Tarn, Tasmania. This study includes a combination of radiometric dating (¹⁴C and ²¹⁰Pb), sediment geochemistry (XRF and ICP-MS), pollen, charcoal and diatoms. Generalised additive mixed models were used to test if changes in the aquatic ecosystem can be explained by other covariates. Results from this record found four key impact phases: (1) Pre-mining, (2) Early mining, (3) Intense mining, and (4) Post-mining. Before mining, low heavy metal concentrations, slow sedimentation, low fire activity, and high biomass indicate pre-impact conditions. The aquatic environment at this time was oligotrophic and dystrophic with sufficient light availability, typical of western Tasmanian lakes during the Holocene. Prosperous mining resulted in increased burning, a decrease in landscape biomass and an increase in sedimentation resulting in decreased light availability of the aquatic environment. Extensive mining at Mount Lyell in the 1930s resulted in peak heavy metal pollutants (Pb, Cu and Co) and a further increase in inorganic inputs resulted in a disturbed low light lake environment (dominated by Hantzschia amphioxys and Pinnularia divergentissima). Following the closure of the Mount Lyell Co. in 1994 CE, Ca declined to below pre-mining levels resulting in a new diatom assemblage and deformed diatom valves. Therefore, the Owen Tarn record demonstrates severe sediment pollution and continued impacts of mining long after mining has stopped at Mt. Lyell Mining Co.
Afficher plus [+] Moins [-]