Affiner votre recherche
Résultats 1461-1470 de 7,995
Mixtures of rare earth elements show antagonistic interactions in Chlamydomonas reinhardtii Texte intégral
2021
Morel, Elise | Cui, Lei | Zerges, William | Wilkinson, Kevin J.
In order to better understand the environmental risks of the rare earth elements (REEs), it is necessary to determine their fate and biological effects under environmentally relevant conditions (e.g. at low concentrations, REE mixtures). Here, the unicellular freshwater microalga, Chlamydomonas reinhardtii, was exposed for 2 h to one of three soluble REEs (Ce, Tm, Y) salts at 0.5 μM or to an equimolar mixture of these REEs. RNA sequencing revealed common biological effects among the REEs. Known functions of the differentially expressed genes support effects of REEs on protein processing in the endoplasmic reticulum, phosphate transport and the homeostasis of Fe and Ca. The only stress response detected was related to protein misfolding in the endoplasmic reticulum. When the REEs were applied as a mixture, antagonistic effects were overwhelmingly observed with transcriptomic results suggesting that the REEs were initially competing with each other for bio-uptake. Metal biouptake results were consistent with this interpretation. These results suggest that the approach of government agencies to regulate the REEs using biological effects data from single metal exposures may be a largely conservative approach.
Afficher plus [+] Moins [-]Biomarkers-based assessment of triclosan toxicity in aquatic environment: A mechanistic review Texte intégral
2021
Kumar, Saurav | Paul, Tapas | Shukla, S.P. | Kundan Kumar, | Karmakar, Sutanu | Bera, Kuntal Krishna | Bhushan kumar, Chandra
Triclosan (TCS), an emergent pollutant, is raising a global concern due to its toxic effects on organisms and aquatic ecosystems. The non-availability of proven treatment technologies for TCS remediation is the central issue stressing thorough research on understanding the underlying mechanisms of toxicity and assessing vital biomarkers in the aquatic organism for practical monitoring purposes. Given the unprecedented circumstances during COVID 19 pandemic, a several-fold higher discharge of TCS in the aquatic ecosystems cannot be considered a remote possibility. Therefore, identifying potential biomarkers for assessing chronic effects of TCS are prerequisites for addressing the issues related to its ecological impact and its monitoring in the future. It is the first holistic review on highlighting the biomarkers of TCS toxicity based on a comprehensive review of available literature about the biomarkers related to cytotoxicity, genotoxicity, hematological, alterations of gene expression, and metabolic profiling. This review establishes that biomarkers at the subcellular level such as oxidative stress, lipid peroxidation, neurotoxicity, and metabolic enzymes can be used to evaluate the cytotoxic effect of TCS in future investigations. Micronuclei frequency and % DNA damage proved to be reliable biomarkers for genotoxic effects of TCS in fishes and other aquatic organisms. Alteration of gene expression and metabolic profiling in different organs provides a better insight into mechanisms underlying the biocide's toxicity. In the concluding part of the review, the present status of knowledge about mechanisms of antimicrobial resistance of TCS and its relevance in understanding the toxicity is also discussed referring to the relevant reports on microorganisms.
Afficher plus [+] Moins [-]Ammonium-nitrogen addition at the seedling stage does not reduce grain cadmium concentration in two common wheat (Triticum aestivum L.) cultivars Texte intégral
2021
Cheng, Yiran | Yang, Tian | Xiang, Wenhui | Li, Siyu | Fan, Xing | Sha, Lina | Kang, Houyang | Wu, Dandan | Zhang, Haiqin | Zeng, Jian | Zhou, Yonghong | Wang, Yi
High cadmium (Cd) concentration in common wheat (Triticum aestivum L.) grains poses potential health risks. Several management strategies have been used to reduce grain Cd concentration. However, limited information is available on the use of ammonium-nitrogen (NH₄⁺-N) as a strategy to manage Cd concentration in wheat grains. In this study, NH₄⁺-N addition at the seedling stage unchanged the grain Cd concentration in the high-Cd accumulator, Zhoumai 18 (ZM18), but dramatically increased that in the low-Cd accumulator, Yunmai 51 (YM51). Further analysis revealed that the effects of NH₄⁺-N addition on whole-plant Cd absorption, root-to-shoot Cd translocation, and shoot-to-grain Cd remobilization were different between the two wheat cultivars. In ZM18, NH₄⁺-N addition did not change whole-plant Cd absorption, but inhibited root-to-shoot Cd translocation and Cd remobilization from lower internodes, lower leaves, node 1, and internode 1 to grains via the down-regulation of yellow stripe-like transporters (YSL), zinc transporters (ZIP5, ZIP7, and ZIP10), and heavy-metal transporting ATPases (HMA2). This inhibition decreased the grain Cd content by 29.62%, which was consistent with the decrease of the grain dry weight by 23.26%, leading to unchanged grain Cd concentration in ZM18. However, in YM51, NH₄⁺-N addition promoted continuous Cd absorption during grain filling, root-to-shoot Cd translocation and whole-plant Cd absorption. The absorbed Cd was directly transported to internode 1 via the xylem and then re-transported to grains via the phloem by up-regulated YSL, ZIP5, and copper transporters (COPT4). This promotion increased the grain Cd content by 245.35%, which was higher than the increased grain dry weight by 132.89%, leading to increased grain Cd concentration in YM51. Our findings concluded that the addition of NH₄⁺-N fertilizer at the seedling stage is not suitable for reducing grain Cd concentration in common wheat cultivars.
Afficher plus [+] Moins [-]Peat-forest burning smoke in Maritime Continent: Impacts on receptor PM2.5 and implications at emission sources Texte intégral
2021
Lan, Yang | Tham, Jackson | Jia, Shiguo | Sarkar, Sayantan | Fan, Wei Hong | Reid, Jeffrey S. | Ong, Choon Nam | Yu, Liya E.
This study characterizes the impacts of transported peat-forest (PF) burning smoke on an urban environment and evaluates associated source burning conditions based on carbon properties of PM₂.₅ at the receptor site. We developed and validated a three-step classification that enables systematic and more rapid identification of PF smoke impacts on a tropical urban environment with diverse emissions and complex atmospheric processes. This approach was used to characterize over 300 daily PM₂.₅ data collected during 2011–2013, 2015 and 2019 in Singapore. A levoglucosan concentration of ≥0.1 μg/m³ criterion indicates dominant impacts of transported PF smoke on urban fine aerosols. This approach can be used in other ambient environments for practical and location-dependent applications. Organic carbon (OC) concentrations (as OC indicator) can be an alternate to levoglucosan for assessing smoke impacts on urban environments. Applying the OC concentration indicator identifies smoke impacts on ∼80% of daily samples in 2019 and shows an accuracy of 51–86% for hourly evaluation. Following the systematic identification of urban PM₂.₅ predominantly affected by PF smoke in 2011–2013, 2015 and 2019, we assessed the concentration ratio of char-EC/soot-EC as an indicator of smoldering- or flaming-dominated burning emissions. When under the influence of transported PF smoke, the mean concentration ratio of char-EC to soot-EC in urban PM₂.₅ decreased by >70% from 8.2 in 2011 to 2.3 in 2015 but increased to 3.8 in 2019 (p < 0.05). The reversed trend with a 65% increase from 2015 to 2019 shows stronger smoldering relative to flaming, indicating a higher level of soil moisture at smoke origins, possibly associated with rewetting and revegetating peatlands since 2016.
Afficher plus [+] Moins [-]Lead accumulation in photosynthetic Euglena gracilis depends on polyphosphates and calcium Texte intégral
2021
Hernández-Garnica, M. | García-García, J.D. | Moreno-Sánchez, R. | Sánchez-Thomas, R.
Worldwide increasing levels of lead in water systems require the search for efficient ecologically friendly strategies to remove it. Hence, lead accumulation by the free-living algae-like Euglena gracilis and its effects on cellular growth, respiration, photosynthesis, chlorophyll, calcium, and levels of thiol- and phosphate-molecules were analyzed. Photosynthetic cells were able to accumulate 4627 mg lead/kgDW after 5 days of culture with 200 μM Pb²⁺. Nevertheless, exposure to 50, 100 and 200 μM Pb²⁺ for up to 8 days did not modify growth, viability, chlorophyll content and oxygen consumption/production. Enhanced biosynthesis of thiol molecules and polyphosphates, i.e. the two canonical metal ion chelation mechanisms in E. gracilis, was not induced under such conditions. However, in cells cultured in the absence of phosphate, lead accumulation and polyphosphate content markedly decreased, while culturing in the absence of sulfate did not modify the accumulation of this metal. In turn, the total amount of intracellular calcium slightly increased as the amount of intracellular lead increased, whereas under Ca²⁺ deficiency lead accumulation doubled. Therefore, the results indicated that E. gracilis is highly resistant to lead through mechanisms mediated by polyphosphates and Ca²⁺ and can in fact be classified as a lead hyperaccumulator microorganism.
Afficher plus [+] Moins [-]Eco-friendly synthesis of lignin mediated silver nanoparticles as a selective sensor and their catalytic removal of aromatic toxic nitro compounds Texte intégral
2021
Lee, Seung Jun | Begildayeva, Talshyn | Yeon, Sanghun | Naik, Shreyanka Shankar | Ryu, Hakseung | Kim, Tae Ho | Choi, Myong Yong
The development of an eco-friendly and reliable process for the production of nanomaterials is essential to overcome the toxicity and exorbitant cost of conventional methods. As such, a facile and green synthesis method is introduced for the preparation of lignin mediated silver nanoparticles (L-Ag NPs). This is produced by reducing Ag precursors using lignin biopolymers which are formulated by pulsed laser irradiation and an ultrasonication process. Lignin operates as both a reducing and stabilizing agent. The various analytical techniques of ultraviolet–visible spectroscopy, transmission electron microscope and X-ray diffractometer studies were employed to verify the formation of non-aggregated spherical L-Ag NPs with an average size as small as 7–8 nm. The selective sensing capability of the synthesized L-Ag NPs was examined for the detection of hydrogen peroxide and mercury ions in an aqueous environment. Furthermore, the superior catalytic performance of L-Ag NPs was demonstrated by the rapid conversion of toxic 4-nitrophenol and nitrobenzene as targeted pollutants to the corresponding amino compounds. A plausible catalytic reduction mechanism for the removal of toxic nitro-organic pollutants over L-Ag NPs is proposed. This research coincides with existing studies and affirms that L-Ag NPs are an effective sensor that be applied as a catalytic material within environmental remediation and also alternative biomedical applications.
Afficher plus [+] Moins [-]Low-dose cadmium stress increases the bioaccumulation and toxicity of dinotefuran enantiomers in zebrafish (Danio rerio)? Texte intégral
2021
Di, Shanshan | Qi, Peipei | Wu, Shenggan | Wang, Zhiwei | Zhao, Huiyu | Zhao, Xueping | Wang, Xiangyun | Xu, Hao | Wang, Xinquan
Co-occurrence of pesticides and heavy metals has attracted extensive attention. The enantioselective behaviors of dinotefuran to aquatic organisms have not been reported, and the effects of cadmium (Cd) was absent, which were investigated in this study at environmentally relevant concentrations. The enantioselective accumulation and elimination of dinotefuran enantiomers were observed in zebrafish, and it had tissue specificity. The S-dinotefuran concentrations were higher than R-dinotefuran in heads and viscera, but it was opposite in muscles. There existed competition between S-dinotefuran and R-dinotefuran, and the existence of S-dinotefuran might decrease the accumulation and elimination of the R-dinotefuran in zebrafish. When co-exposure to Cd and dinotefuran, the accumulation concentrations of dinotefuran enantiomers increased in zebrafish at the initial stage, which were opposite latterly. The accumulation concentrations of R-dinotefuran in R + Cd treatment in fish were 3.4 times higher than those in R-dinotefuran treatment, and the enantiomer fraction (EF) values changed from 0.484 to 0.195. The oxidative stress of S-dinotefuran on zebrafish was highest, followed by rac- and R-dinotefuran. Co-exposure to Cd led to toxicity increase for R-dinotefuran, the malonaldehyde (MDA) content decreased significantly in R + Cd treatment during 7–28 days, while obvious declination of MDA contents was found on the 28th day in R-dinotefuran treatment. Furthermore, compared to R-dinotefuran treatment, Cd increased the relative expression of cz-sod (3.4 times), cas3 (1.6 times) and p53 (5.7 times) in R + Cd treatment. The co-exposure of Cd might alter the environmental behaviors and toxicity effects of dinotefuran enantiomers in zebrafish, including the enantioselectivity. The effects of Cd on accumulation and toxicity of R-dinotefuran were greater than those on S-dinotefuran. Thus, it is necessary to consider the effects of coexistent metals to chiral pesticides in ecological risk.The enantioselective accumulation and elimination of dinotefuran enantiomers had tissue specificity. Cd increased the accumulation and toxicity of R-dinotefuran in zebrafish.
Afficher plus [+] Moins [-]Establishment and verification of anthropogenic volatile organic compound emission inventory in a typical coal resource-based city Texte intégral
2021
Niu, Yueyuan | Yan, Yulong | Li, Jing | Liu, Peng | Liu, Zhuocheng | Hu, Dongmei | Peng, Lin | Wu, Jing
A few studies on volatile organic compound (VOC) emission inventories in coal resource-based cities have been reported, and previous emission inventories lacked verification. Herein, using Yangquan as a case study, emission factor (EF) method and “(tracer ratio) TR - positive matrix factorization (PMF)” combined method based on atmospheric data were used to establish and verify the VOC emission inventory in coal resource-based cities, respectively. The total VOC emissions in Yangquan were 9283.2 t [-40.0%, 62.1%] in 2018, with industrial processes being the major contributors. Alkanes (35.8%), aromatics (25.0%), and alkenes (19.8%) were the main compounds in the emission inventory. The verification results for both species emission and source structure were in agreement, indicating the accuracy of VOC emission inventory based on EF method to a certain extent. However, for some species (ethane, propane, benzene, and acetylene), the EF method indicated emissions lower than those obtained from the TR results. Furthermore, the summer-time emission contribution from fossil fuel combustion indicated by the EF method (23.4%) was lower than that obtained from the PMF results (38.4%). Overall, these discrepancies could be attributed to the absence of a coal gangue source in the EF method. The verification results determined the accuracy of the VOC emission inventory and identified existing problems in the estimation of the VOC emission inventory in coal resource-based cities. In particular, not accounting for the coal gangue emissions may result in an underestimation of VOC emissions in coal resource-based cities. Thus, coal gangue emissions should be considered in future research.
Afficher plus [+] Moins [-]Effects of dim artificial light at night on locomotor activity, cardiovascular physiology, and circadian clock genes in a diurnal songbird Texte intégral
2021
Alaasam, Valentina J. | Liu, Xu | Niu, Ye | Habibian, Justine S. | Pieraut, Simon | Ferguson, Brad S. | Zhang, Yong | Ouyang, Jenny Q.
Artificial light is transforming the nighttime environment and quickly becoming one of the most pervasive pollutants on earth. Across taxa, light entrains endogenous circadian clocks that function to synchronize behavioral and physiological rhythms with natural photoperiod. Artificial light at night (ALAN) disrupts these photoperiodic cues and has consequences for humans and wildlife including sleep disruption, physiological stress and increased risk of cardiovascular disease. However, the mechanisms underlying organismal responses to dim ALAN, resembling light pollution, remain elusive. Light pollution exists in the environment at lower levels (<5 lux) than tested in many laboratory studies that link ALAN to circadian rhythm disruption. Few studies have linked dim ALAN to both the upstream regulators of circadian rhythms and downstream behavioral and physiological consequences. We exposed zebra finches (Taeniopygia gutatta) to dim ALAN (1.5 lux) and measured circadian expression of five pacemaker genes in central and peripheral tissues, plasma melatonin, locomotor activity, and biomarkers of cardiovascular health. ALAN caused an increase in nighttime activity and, for males, cardiac hypertrophy. Moreover, downstream effects were detectable after just short duration exposure (10 days) and at dim levels that mimic the intensity of environmental light pollution. However, ALAN did not affect circulating melatonin nor oscillations of circadian gene expression in the central clock (brain) or liver. These findings suggest that dim ALAN can alter behavior and physiology without strong shifts in the rhythmic expression of molecular circadian pacemakers. Approaches that focus on ecologically-relevant ALAN and link complex biological pathways are necessary to understand the mechanisms underlying vertebrate responses to light pollution.
Afficher plus [+] Moins [-]Deposition of ambient particles in the human respiratory system based on single particle analysis: A case study in the Pearl River Delta, China Texte intégral
2021
Jia, Shiguo | Zhang, Qi | Yang, Liming | Sarkar, Sayantan | Krishnan, Padmaja | Mao, Jingying | Hang, Jian | Chang, Ming | Zhang, Yiqiang | Wang, Xuemei | Chen, Weihua
It is important to evaluate how ambient particles are deposited in the human respiratory system in view of the adverse effects they pose to human health. Traditional methods of investigating human exposure to ambient particles suffer from drawbacks related either to the lack of chemical information from particle number-based measurements or to the poor time resolution of mass-based measurements. To address these issues, in this study, human exposure to ambient particulate matter was investigated using single particle analysis, which provided chemical information with a high time resolution. Based on single particle measurements conducted in the Pearl River Delta, China, nine particle types were identified, and EC (elemental carbon) particles were determined to be the most dominant type of particle. In general, the submicron size mode was dominant in terms of the number concentration for all of the particle types, except for Na-rich and dust particles. On average, around 34% of particles were deposited in the human respiratory system with 13.9%, 7.9%, and 12.6% being distributed in the head, tracheobronchial, and pulmonary regions, respectively. The amount of Na-rich particles deposited was the highest, followed by EC. The overall deposition efficiencies of the Na-rich and dust particles were higher than those of the other particle types due to their higher efficiencies in the head region, which could be caused by the greater sedimentation and impaction rates of larger particles. In the head region, the Na-rich particles made the largest contribution (30.5%) due to their high deposition efficiency, whereas in the tracheobronchial and pulmonary regions, EC made the largest contribution due to its high concentration. In summary, the findings of this initial trial demonstrate the applicability of single particle analysis to the assessment of human exposure to ambient particles and its potential to support traditional methods of analysis.
Afficher plus [+] Moins [-]