Affiner votre recherche
Résultats 1471-1480 de 3,201
Stratification of Granular Activated Carbon Filters for Advanced Wastewater Treatment
2015
Ruhl, Aki S. | Zietzschmann, Frederik | Altmann, Johannes | Meinel, Felix | Sperlich, Alexander | Jekel, Martin
Advanced wastewater treatment with granular activated carbon (GAC) is a promising option to reduce emissions of organic micropollutants (OMP) into the aquatic environment. Frequent back-washes of the GAC filters are required due to high particle concentration in the treated wastewater but lead to stratification. Differences in adsorption capacities of individual strata are not known. The present study aimed at investigating physical and chemical differences at different filter depths of a stratified GAC filter. Two different commercial products were stratified during repeated filter bed expansions and sectioned into vertical fractions. Bulk densities, grain size distributions and ash contents of the individual fractions differed significantly. Adsorption tests with pulverized GAC from different levels showed great vertical differences in adsorption properties. OMP removals determined in the upper part of a GAC filter therefore cannot be extrapolated downwards. Both physical and chemical vertical heterogeneities with regard to adsorption capacities and residence times at different filter depths should be considered in the filter design, in the monitoring of a GAC filter, and in the interpretation of the GAC filter performance. Good correlations between abatements of UV light absorption and OMP removals were found for the virgin GAC throughout the non-uniform filter.
Afficher plus [+] Moins [-]Detection and Monitoring of REEs and Related Trace Elements with an Itrax™ Core Scanner in the Ría de Huelva (SW Spain)
2015
Rodríguez-Germade, I. | Rubio, B. | Rey, D. | Borrego, J.
The Ría de Huelva is one of the most polluted areas in Western Europe because of the high acid mining activity together with the chemical industries located in its margins. This strong anthropogenic pressure results in the liberation of high concentrations of metals and rare earth elements (REEs) to the Ría. In this work, an Itrax™ Core Scanner (Itrax) has been used for the first time to detect and to study REEs distribution in a sediment core. Its high sensitivity (until 5 μg·g⁻¹for Er) was confirmed by comparing its semi-quantitative results with concentration values obtained from inductively coupled plasma mass spectrometry (ICP-MS). In this way, establishing equivalences between Itrax continuous data and concentration data have been possible to detect pollution levels caused by REEs and related trace elements along the whole sediment core reducing the discrete analyses and therefore saving time and money. Moreover, Itrax was confirmed as a fast screening and monitoring tool to study REEs fractionation patterns and to identify the environmental changes responsible of these patterns.
Afficher plus [+] Moins [-]Zebrafish cardiotoxicity: the effects of CYP1A inhibition and AHR2 knockdown following exposure to weak aryl hydrocarbon receptor agonists
2015
Brown, Daniel R. | Clark, Bryan W. | Garner, Lindsey V. T. | Di Giulio, Richard T.
The aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor that mediates many of the toxic effects of dioxin-like compounds (DLCs) and some polycyclic aromatic hydrocarbons (PAHs). Strong AHR agonists, such as certain polychlorinated biphenyls and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), cause severe cardiac teratogenesis in fish embryos. Moderately strong AHR agonists, such as benzo[a]pyrene and β-naphthoflavone, have been shown to cause similar cardiotoxic effects when coupled with a cytochrome P450 1A (CYP1A) inhibitor, such as fluoranthene (FL). We sought to determine if weak AHR agonists, when combined with a CYP1A inhibitor (FL) or CYP1A morpholino gene knockdown, are capable of causing cardiac deformities similar to moderately strong AHR agonists (Wassenberg and Di Giulio Environ Health Perspect 112(17):1658–1664, 2004a; Wassenberg and Di Giulio Res 58(2–5):163–168, 2004b; Billiard et al. Toxicol Sci 92(2):526–536, 2006; Van Tiem and Di Giulio Toxicol Appl Pharmacol 254(3):280–287, 2011). The weak AHR agonists included the following: carbaryl, phenanthrene, 2-methylindole, 3-methylindole, indigo, and indirubin. Danio rerio (zebrafish) embryos were first exposed to weak AHR agonists at equimolar concentrations. The agonists were assessed for their relative potency as inducers of CYP1 enzyme activity, measured by the ethoxyresorufin-O-deethylase (EROD) assay, and cardiac deformities. Carbaryl, 2-methylindole, and 3-methylindole induced the highest CYP1A activity in zebrafish. Experiments were then conducted to determine the individual cardiotoxicity of each compound. Next, zebrafish were coexposed to each agonist (at concentrations below those determined to be cardiotoxic) and FL in combination to assess if CYP1A inhibition could induce cardiac deformities. Carbaryl, 2-methylindole, 3-methylindole, and phenanthrene significantly increased pericardial edema relative to controls when combined with FL. To further evaluate the interaction of the weak AHR agonists and CYP1A inhibition, a morpholino was used to knockdown CYP1A expression, and embryos were then exposed to each agonist individually. In embryos exposed to 2-methylindole, CYP1A knockdown caused a similar level of pericardial edema to that caused by exposure to 2-methylindole and FL. The results showed a complex pattern of cardiotoxic response to weak agonist inhibitor exposure and morpholino-knockdown. However, CYP1A knockdown in phenanthrene and 3-methylindole only moderately increased pericardial edema relative to coexposure to FL. AHR2 expression was also knocked down using a morpholino to determine its role in mediating the observed cardiac teratogenesis. Knockdown of AHR2 did not rescue the pericardial edema as previously observed with strong AHR agonists. While some of the cardiotoxicity observed may be attributed to the combination of weak AHR agonism and CYP1A inhibition, other weak AHR agonists appear to be causing cardiotoxicity through an AHR2-independent mechanism. The data show that CYP1A is protective of the cardiac toxicity associated with weak AHR agonists and that knockdown can generate pericardial edema, but these findings are also suggestive of differing mechanisms of cardiac toxicity among known AHR agonists.
Afficher plus [+] Moins [-]Nitric Oxide Attenuates Oxidative Stress Induced by Arsenic in Lettuce (Lactuca sativa) Leaves
2015
Silveira, Neidiquele M. | de Oliveira, Juraci A. | Ribeiro, Cleberson | Canatto, Regiane A. | Siman, Luhan | Cambraia, José | Farnese, Fernanda
Lettuce plants were exposed to different toxic levels of arsenic (As) to induce an oxidative stress response, and the role of nitric oxide (NO) (provided as sodium nitroprusside (SNP)) as an attenuating agent of this stress condition was evaluated. Plants were treated with 50 μM of As with or without 100 μM SNP added to the nutrient solution. The hydrogen peroxide, superoxide anion, and malondialdehyde concentrations and enzymatic activities were measured. The increase in As concentration detected in the leaves was followed by a significant increase in H₂O₂ and malondialdehyde (MDA) concentrations. However, the presence of SPN promoted a reduction in the concentration of these oxidative agents and also reduced the translocation of As to the shoots. The enzymatic activities in the plants exposed to As were increased, which indicates the active participation of these enzymes in the reduction of oxidative stress induced by the metalloid. In the plants exposed to As and SNP, the enzymatic activities were not so high; this result was possibly related to the direct action of NO in scavenging the generated toxic metabolites and with the reduction in the translocation of the pollutant to the shoots. Lettuce and leaves of other vegetables are usually ingested, and this study shows an alternative to avoid human contamination with As.
Afficher plus [+] Moins [-]Intensify Removal of Nitrobenzene from Aqueous Solution Using Nano-Zero Valent Iron/Granular Activated Carbon Composite as Fenton-Like Catalyst
2015
Hu, Sihai | Yao, Hairui | Wang, Kaifeng | Lu, Cong | Wu, Yaoguo
To obtain a good catalytic effect of removing refractory organics from water by Fenton process, granular activated carbon (GAC) supported nano-zero valent iron (nZVI) composite (nZVI/GAC) was prepared by adsorption–reduction method, and characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and energy-dispersive X-ray spectroscopy (EDS). The catalytic degradation activity of the composite was evaluated to remove nitrobenzene (NB) pollutant via a heterogeneous Fenton-like system, and the initial pH value, nZVI/GAC dosage, and H₂O₂concentration influencing on NB removal were also investigated at room temperature. Experimental results showed that nZVI particle was uniformly dispersed over GAC matrix, and average particle size was 40–100 nm without agglomeration. The nZVI/GAC composite was very efficient in removing NB with average percentage of more than 85 %. However, the removal rate of Fenton-like reaction was highly affected by pH value, H₂O₂concentration, and nZVI/GAC dosage. The optimal reaction conditions were pH 4.0, 40 mg/L NB, 5.0 mmol/L H₂O₂, and 0.4 g/L nZVI/GAC in this study. Stability and repeatability tests as well as mechanism analysis illustrated that GAC improved catalytic action via enhancing nZVI dispersion and accelerating Fe(III)/Fe(II) cycle attributing to internal iron–carbon microelectrolysis in nZVI/GAC composite. Iron utilization efficiency, which played an important role in NB degradation by Fenton-like greatly increased resulting in dissolved iron <0.6 mg/L. This phenomenon strongly implied that the nZVI/GAC Fenton-like process was not only a practical combination of adsorption and Fenton oxidation but also some synergetic effects existing in such an nZVI/GAC composite.
Afficher plus [+] Moins [-]Solvent Tolerance Mechanisms in Shewanella putrefaciens IBBPo6
2015
Stancu, Mihaela Marilena
Shewanella putrefaciens IBBPₒ₆(KM405339) showed good tolerance to 5 % organic solvents. The growth was higher when S. putrefaciens IBBPₒ₆cells were exposed to n-decane, as compared with the growth of cells exposed to toluene, o-xylene, ethylbenzene, cyclohexane, or n-hexane. Thus, n-decane was less toxic for S. putrefaciens IBBPₒ₆cells, while toluene, o-xylene, ethylbenzene, cyclohexane, and n-hexane were more toxic for this bacterium. The release of nucleic acids was higher when S. putrefaciens IBBPₒ₆cells were exposed to toluene, o-xylene, ethylbenzene, cyclohexane, or n-hexane, as compared with the release of nucleic acids from control cells and n-decane exposed cells. The cell surface hydrophobicity increased when S. putrefaciens IBBPₒ₆cells were exposed to n-decane, while in the presence of toluene, o-xylene, ethylbenzene, cyclohexane, and n-hexane, a decrease in the cell surface hydrophobicity was acquired. The exposure of S. putrefaciens IBBPₒ₆cells to 5 % organic solvents had induced biofilms formation, and their structure differs according to the nature of the hydrophobic substrate. Two secondary metabolites (i.e., biosurfactants, carotenoids) were produced by S. putrefaciens IBBPₒ₆control cells, as well as by the cells exposed to 5 % organic solvents. S. putrefaciens IBBPₒ₆possesses alkB1 and alkM1 catabolic genes and HAE1 transporter gene. A homologue of otsA1 gene was also detected in this bacterium. Some differences between the polymerase chain reaction (PCR) patterns of S. putrefaciens IBBPₒ₆control cells and cells exposed to 5 % organic solvents were observed. Distinct repetitive sequence-based PCR (rep-PCR), random amplification of DNA fragments (RAPD), and amplified ribosomal DNA restriction analysis (ARDRA) patterns were also acquired in S. putrefaciens IBBPₒ₆cells exposed to 5 % organic solvents, compared with the control cells.
Afficher plus [+] Moins [-]Arsenic Adsorption Using Palm Oil Waste Clinker Sand Biotechnology: an Experimental and Optimization Approach
2015
Rehman, Muhammad Abdur | Ismail Yusoff, | Ahmmad, Rasel | Alias, Yatimah
We need specific and competent adsorbents to remove arsenic and bring it down to permissible levels in drinking water. Therefore, industrial byproducts are extensively applied to produce large amounts of natural adsorbents. Similarly, managing optimum arsenic adsorption with palm oil clinker sand (POCS) is possible through a careful statistical planning of adsorption variables. We plan and perform a minimum number of experiments to (1) obtain optimum arsenic adsorption and (2) provide a new possible application opportunity to the industrial waste managers and future planners. We observed that adsorption of arsenic was dependent on the pH of the system, initial concentration of arsenic (mg L⁻¹), amount (mg) of POCS, and temperature of the bio-adsorption system. A correlation among the study variables was constructed by three-dimensional (3D) response surfaces and two-dimensional (2D) contour plots based on central composite design (CCD) experiments in a batch mode of study. A quadratic model fitted well with the experimental data and better explained the superiority of current bio-adsorption system and efficient removal of arsenic from water samples. We confirmed that the selected variables were experimentally and statistically significant and controlled the overall adsorption response by the batch system. A comparative and thorough analysis of the adsorption process confirmed that selected variables were mutually interacting in a nonlinear fashion in this study. Excellent experimental results and external comparative studies prove the relative importance of the present model and adsorption system for arsenic remediation biotechnology.
Afficher plus [+] Moins [-]Chemometric Analysis for Pollution Source Assessment of Harbour Sediments in Arctic Locations
2015
Pedersen, Kristine B. | Lejon, Tore | Jensen, Pernille E. | Ottosen, Lisbeth M.
Pollution levels, pollutant distribution and potential source assessments based on multivariate analysis (chemometrics) were made for harbour sediments from two Arctic locations; Hammerfest in Norway and Sisimiut in Greenland. High levels of heavy metals were detected in addition to organic pollutants. Preliminary assessments based on principal component analysis (PCA) revealed different sources and pollutant distribution in the sediments of the two harbours. Tributyltin (TBT) was, however, found to originate from point source(s), and the highest concentrations of TBT in both harbours were found adjacent to the former shipyards. Polyaromatic hydrocarbons (PAH) ratios and PCA plots revealed that the predominant source in both harbours was pyrogenic related to coal/biomass combustion. Comparison of commercial polychlorinated biphenyls (PCB) mixtures with PCB compositions in the sediments indicated relation primarily to German, Russian and American mixtures in Hammerfest; and American, Russian and Japanese mixtures in Sisimiut. PCA was shown to be an important tool for identifying pollutant sources and differences in pollutant composition in relation to sediment characteristics.
Afficher plus [+] Moins [-]Biochar from Pine and Birch Morphology and Pore Structure Change by Treatment in Biofilter
2015
Baltrėnas, Pranas | Baltrėnaitė, Edita | Spudulis, Edmundas
The application of biochar as a sustainable material in biofilters to remove volatile compounds from the air provides a lot of advantages in relation to equipment maintenance and efficiency and ensures a zero-emission process. This work has analysed the morphology of biochar produced from birch and pine at different temperatures, its pore structure and changes depending on the type of pollutant and microorganisms used in biofiltrating media. Biochar morphology was investigated by scanning electron microscopy, while biochar pore structure was analysed by mercury intrusion porosimetry and nitrogen absorption at 77 K. Performed tests have shown that the biggest surface area of pores is in the biochar from pine that underwent thermal treatment at 750 °C. It has been determined that the pore volume of pine biochar decreases when acetone, xylene and ammonia pollutants are being removed from air during biofiltration. The biggest changes occurred in the pores with a diameter of 2–20 μm. Meanwhile, after the treatment with the studied volatile compounds, the surface area of pine biochar mesopores with a diameter smaller than 0.05 μm increased.
Afficher plus [+] Moins [-]Remediation of a Biodiesel Blend-Contaminated Soil with Activated Persulfate by Different Sources of Iron
2015
Pardo, Fernando | Rosas, Juana M. | Santos, Aurora | Romero, Arturo
The present work studies the remediation of a B20 (20 % biodiesel, 80 % diesel) biodiesel blend-contaminated soil (1,000 mg kg⁻¹) with persulfate activated by iron. Three different sources of iron (Fe(II)), granular zerovalent iron (gZVI), and a slurry of nanoparticles of zerovalent iron (nZVI), without pH adjustment were tested. Besides, the effect of the addition of chelating agents, such as trisodium citrate (SC), or citric acid (CiA), has been also studied. SC promotes pH under near-neutral conditions and reaction takes place at low rate at these experimental conditions. On the other hand, the use of CiA leads to an acidic pH and chelating agent is oxidized at higher rate than total petroleum hydrocarbons (TPH). Therefore, CiA addition does not seem to produce any improvement on the removal efficiency of TPH. Regarding the three different sources of iron used as activators, Fe(II), gZVI and nZVI, in absence of chelating agent, under acidic pH and by adding the same amount of iron, the highest TPH conversion was obtained with ZVI (about 60 %), while a conversion of about 40 % was obtained with the addition of Fe(II). The maximum TPH conversion value was achieved in shorter time using nZVI. Concerning the removal efficiency of each fraction of biodiesel abated, fatty acid methyl esters (FAME) were by far the easiest to oxidize, achieving 100 % of conversion, either by using Fe(II) or nZVI activated persulfate.
Afficher plus [+] Moins [-]