Affiner votre recherche
Résultats 1481-1490 de 7,975
Toxic effects of exposure to microplastics with environmentally relevant shapes and concentrations: Accumulation, energy metabolism and tissue damage in oyster Crassostrea gigas
2021
Teng, Jia | Zhao, Jianmin | Zhu, Xiaopeng | Shan, Encui | Zhang, Chen | Zhang, Wenjing | Wang, Qing
Microplastics (MPs) are widely found in coastal areas and oceans worldwide. The MPs are environmentally concerning due to their bioavailability and potential impacts on a wide range of marine biota, so assessing their impact on the biota has become an urgent research priority. In the present study, we exposed Crassostrea gigas oysters to irregular MPs of two polymer types (polyethylene (PE) and polyethylene terephthalate (PET)) at concentrations of 10 and 1000 μg L⁻¹ for 21 days. Accumulation of MPs, changes in metabolic enzyme activity, and histological damage were evaluated, and metabolomics analysis was conducted. Results demonstrated that PE and PET MPs were detected in the gills and digestive gland following exposure to both tested concentrations, confirming ingestion of MPs by the organisms. Moreover, both PE and PET MPs inhibited lipid metabolism, while energy metabolism enzyme activities were activated in the oysters. Histopathological damage of exposed oysters was also observed in this study. Integrated biomarker response (IBR) results showed that MPs toxicity increased with increasing MPs concentration, and the toxic effects of PET MPs on oysters was greater than PE MPs. In addition, metabolomics analysis suggested that MPs exposure induced alterations in metabolic profiles in oysters, with changes in energy metabolism and inflammatory responses. This study reports new insights into the consequences of MPs exposure in marine bivalves at environmentally relevant concentrations, providing valuable information for ecological risk assessment of MPs in a realistic conditions.
Afficher plus [+] Moins [-]Accumulator plants and hormesis
2021
Calabrese, Edward J. | Agathokleous, Evgenios
Accumulation of metals by plants is an important area of investigation in plant ecology and evolution as well as in soil contamination/phytoremediation practices. This paper reports that hormetic-biphasic dose-response relationships were commonly observed for multiple agents (i.e. arsenic, cadmium, chromium, fluoride, lead, and zinc) and 20 species in plant (hyper)accumulator studies. The hormetic stimulation was related to metal accumulation in affected tissues, with the metal stimulation concentration zone unique for each metal, species, tissue, and endpoint studied. However, quantitative features of the hormetic dose response were similar across all (hyper)accumulation studies, with results independent of plant species, endpoints measured, and metal. The dose-dependent stimulatory and inhibitory/toxic plant responses were often associated with the up- and down-regulation of adaptive mechanisms, especially those involving anti-oxidative enzymatic processes. These findings provide a mechanistic framework to account for both the qualitative and quantitative features of the hormetic dose response in plant (hyper)accumulator studies.
Afficher plus [+] Moins [-]Persistent pollutants exceed toxic thresholds in a freshwater top predator decades after legislative control
2021
Kean, E.F. | Shore, R.F. | Scholey, G. | Strachan, R. | Chadwick, E.A.
Declining emissions of persistent organic pollutants (POPs), subject to international control under the Stockholm convention, are not consistently reflected in biotic samples. To assess spatial and temporal variation in organochlorine pesticides and PCBs in UK freshwaters, we analysed tissues of a sentinel predator, the Eurasian otter, Lutra lutra between 1992 and 2009. Past declines in otter populations have been linked to POPs and it is unclear whether otter recovery is hampered in any areas by their persistence. PCBs, DDT (and derivatives), dieldrin and HCB were detected in over 80% of 755 otter livers sampled. Concentrations of ∑PCB, ∑DDT and dieldrin in otter livers declined across the UK, but there was no significant time trend for ∑PCB-TEQ (WHO toxic equivalency, Van den Berg et al., 2006) or HCB. In general, higher concentrations were found in the midlands and eastern regions, and lowest concentrations in western regions. Concentrations of PCBs and HCB in otters increased near the coast, potentially reflecting higher pollutant levels in estuarine systems. Decades after legislative controls, concentrations of these legacy pollutants still pose a risk to otters and other freshwater predators, with spatially widespread exceedance of thresholds above which reproduction or survival has been reduced in related species.
Afficher plus [+] Moins [-]Distribution of antibiotic resistance genes in the environment
2021
Zhuang, Mei | Achmon, Yigal | Cao, Yuping | Liang, Xiaomin | Ma, Yukun | Wang, Hui | Siame, Bupe A. | Leung, Ka Yin
The prevalence of antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs) in the microbiome is a major public health concern globally. Many habitats in the environment are under threat due to excessive use of antibiotics and evolutionary changes occurring in the resistome. ARB and ARGs from farms, cities and hospitals, wastewater treatment plants (WWTPs) or as water runoffs, may accumulate in water, soil, and air. We present a global picture of the resistome by examining ARG-related papers retrieved from PubMed and published in the last 30 years (1990–2020). Natural Language Processing (NLP) was used to retrieve 496,640 papers, out of which 9374 passed the filtering test and were further analyzed to determine the distribution and diversity of ARG subtypes. The papers revealed seven major antibiotic families together with their respective ARG subtypes in different habitats on six continents. Asia, especially China, had the highest number of ARGs related papers compared to other countries/regions/continents. ARGs belonging to multidrug, glycopeptide, and β-lactam families were the most common in reports from hospitals and sulfonamide and tetracycline families were common in reports from farms, WWTPs, water and soil. We also highlight the ‘omics’ tools used in resistome research, describe some factors that shape the development of resistome, and suggest future work needed to better understand the resistome. The goal was to show the global nature of ARB and ARGs in order to encourage collaborate research efforts aimed at reducing the negative impacts of antibiotic resistance on the One Health concept.
Afficher plus [+] Moins [-]Biomethanation and microbial community response during agricultural biomass and shrimp chaff digestion
2021
Gohar, Ali | Ling, Zhenmin | Saif, Irfan | ʻUs̲mān, Muḥammad | Jalalah, Mohammed | Harraz, Farid A. | Al-Assiri, M.S. | Salama, Sayed | Li, Xiangkai
Anaerobic digestion, a promising technology for waste utilization and bioenergy generation, is a suitable approach to convert the shrimp waste to biomethane, reducing its environmental impact. In this study, shrimp chaff (SC) was co-digested corn straw (CS), wheat straw (WS), and sugarcane bagasse (SB). In co-digestion, SC enhanced biomethane production of CS by 8.47-fold, followed by SC + WS (5.67-folds), and SC + SB (3.37-folds). SC addition to agricultural biomass digestion also promoted the volatile solids removal up to 85%. Microbial community analysis of SC and CS co-digestion presented the dominance of phylum Bacteroidetes, Firmicutes, Proteobacteria, and Euryarchaeota. Proteolytic bacteria were dominant (18.02%) during co-digestion of SC and CS, with Proteiniphilum as major bacterial genera (14%) that converts complex proteinaceous substrates to organic acids. Among the archaeal community, Methanosarcina responsible for conversion of acetate and hydrogen to biomethane, increased up to 70.77% in SC and CS digestion. Addition of SC to the digestion of agricultural wastes can significantly improve the biomethane production along with its effective management to reduce environmental risks.
Afficher plus [+] Moins [-]Pyriproxyfen induces intracellular calcium overload and alters antioxidant defenses in Danio rerio testis that may influence ongoing spermatogenesis
2021
Staldoni de Oliveira, Vanessa | Gomes Castro, Allisson Jhonatan | Marins, Katiuska | Bittencourt Mendes, Ana Karla | Araújo Leite, Gabriel Adan | Zamoner, Ariane | Van Der Kraak, Glen | Mena Barreto Silva, Fátima Regina
We investigated the in vitro effects of pyriproxyfen on ionic balance in the testis of the zebrafish by measuring ⁴⁵Ca²⁺ influx. In vivo pyriproxyfen treatment was carried out to study oxidative stress, and conduct morphological analysis of the testis and liver. Whole testes were incubated in vitro with/without pyriproxyfen (10⁻¹², 10⁻⁹ or 10⁻⁶ M; 30 min) and ⁴⁵Ca²⁺ influx determined. To study pyriproxyfen’s mechanism of action, inhibitors/activators of ionic channels or pumps/exchangers, protein kinase inhibitors or a calcium chelator were added 15 min before the addition of ⁴⁵Ca²⁺ and pyriproxyfen. We evaluated the in vivo effects of 7 day exposure to waterborne pyriproxyfen (10⁻⁹ M) on reactive oxygen species (ROS) formation, lipid peroxidation, and reduced glutathione content (GSH), glutathione S-transferase (GST), superoxide dismutase (SOD), catalase (CAT) and γ-glutamyltransferase (GGT) activity. Morphological analyses of the testis and liver were carried out after in vivo exposure of D. rerio to pyriproxyfen. Pyriproxyfen increased ⁴⁵Ca²⁺ influx by opening the voltage-dependent T-type channels (T-type VDCC), inhibiting sarco/endoplasmic reticulum ⁴⁵Ca²⁺-ATPase (SERCA) and the NCX exchanger (forward mode) and by mobilizing calcium from stores. The involvement of potassium channels and protein kinase C (PKC) was also demonstrated in pyriproxyfen-induced intracellular calcium elevation. In vivo pyriproxyfen treatment of D. rerio increased lipid peroxidation, decreased GSH content and increased GST activity in testes, in addition to increasing the number and size of spermatogonia cysts and inducing hepatocyte basophilia and dilation of blood vessels in the liver. The toxicity of pyriproxyfen is mediated by calcium overload, increased lipid peroxidation, and a diminished antioxidant capacity in the testis, due to GSH depletion, and altered spermatogenesis. The development of high basophilia in the liver suggests that pyriproxyfen may have estrogenic activity, possibly acting as an endocrine-disruptor. These findings indicate that these alterations may contribute to pyriproxyfen toxicity and spermatogenesis disruption.
Afficher plus [+] Moins [-]Prenatal exposure to bisphenol analogues and digit ratio in children at ages 4 and 6 years: A birth cohort study
2021
Wang, Ziliang | Zhou, Yan | Liang, Hong | Miao, Maohua | Chen, Yafei | Zhang, Xiaotian | Song, Xiuxia | Yuan, Wei
Bisphenol analogues (BPs), including bisphenol A (BPA), have been shown to exhibit similar endocrine disrupting activities. However, epidemiological evidence on the reproductive and developmental toxicities of BPs other than BPA is scarce. The second to fourth digit ratio (2D:4D), an endocrine-sensitive endpoint, has been suggested to be a biomarker of prenatal sex steroid exposure and associated with reproductive outcomes in later life. Using the data of 545 mother-child pairs from the Shanghai-Minhang Birth Cohort Study, we prospectively assessed the effects of prenatal exposure to BPs on 2D:4D in children at ages 4 and 6 years. Single-spot urine samples were collected in the third trimester and analyzed for BPs. Digit lengths were measured using a vernier caliper in children at ages 4 and 6 years, and the 2D:4D values for both hands were calculated. A multivariable linear regression model was applied to examine associations between prenatal BPs exposure and 2D:4D digit ratios at each age separately. The generalized estimating equation (GEE) model was used to deal with repeated 2D:4D measures obtained at ages 4 and 6 years. We found that prenatal exposure to BPA alternatives including BPF, BPS, and BPAF was associated with higher digit ratio in boys and/or girls (feminizing), while TCBPA, a halogenated bisphenol, was associated with lower 2D:4D in boys (masculinizing). These associations were more pronounced at 4 years of age, and tended to remain after further considering the potential confounding from prenatal co-exposure to other BPs and childhood BPs exposure. Our study provides epidemiological evidence that BPs exposure during pregnancy may alter the digit development in children, indicative of disrupted reproductive development in later life. Given these new findings, further studies are needed to corroborate our results.
Afficher plus [+] Moins [-]Cd bioavailability and nitrogen cycling microbes interaction affected by mixed amendments under paddy-pak choi continued planting
2021
Li, Houfu | Abbas, Touqeer | Cai, Mei | Zhang, Qichun | Wang, Jingwen | Li, Yong | Di, Hongjie | Ṭāhir, Muḥammad
Cadmium (Cd) is the most concerning soil pollutant, and a threat to human health, especially in China. The in-situ immobilization of Cadmium by amendments is one of the most widely adopted methods to remedy soil contamination. The study was designed to evaluate the effect of organo-chemical amendments on soil Cd bioavailability and nitrogen cycling microbes under continuous planting of rice (Oryza sativa) and pak choi (Brassica chinensis L.). The experiment was carried out using four amendments, Lime, Zeolite, Superphosphate, and Biochar, at two different ratios; M1: at the ratio of 47:47:5:1, and M2 at the ratio of 71:23:5:1, respectively. Moreover, both M1 and M2 were enriched at four levels (T1: 0.5%; T2: 1%; T3: 2%; T4: 4%). Results showed that compared with CK (Cd enriched soils), the yield of rice under treatments of M1T1 and M2T1 increased by 8.93% and 8.36%, respectively. While the biomass (fresh weight) of pak choi under M1 and M2 amendments increased by 2.52–2.98 times and 0.76–2.89 times respectively, under enrichment treatments T1, T2, and T3. The total Cd concentrations in rice grains treated with M1T3 and M2T3 decreased by 89.25% and 93.16%, respectively, compared with CK. On the other hand, the total Cd concentrations in pak choi under M1T3 and M2T2 decreased by 92.86% and 90.23%, respectively. The results showed that soil pH was the main factor affecting Cd bioavailability in rice and pak choi. The Variance partitioning analysis (VPA) of rice and pak choi showed that soil pH was the most significant contributing factor. In the rice season, the contribution of soil pH (P) on Cd bioavailability was 10.14% (P = 0.102), and in the pak choi season, the contribution of soil pH was 8.38% (P = 0.133). Furthermore, the abundance of ammonia oxidation and denitrifying microorganisms had significantly correlation with soil pH and exchange Cd. In rice season, when the enrichment level of amendments increased from 0.5% (T1) to 2% (T3), the gene abundance of AOA, AOB, nirK, nirS and nosZ (І) tended to decrease. While in pak choi season, when the enrichment level increased at the level of 0.5% (T1), 1% (T2), and 2% (T3), the gene abundance of AOB, nirS, and nosZ (І) increased. Additionally, the gene abundance of AOA and nirK showed a reduction in the pak choi season contrasting to rice. And the mixed amendment M2 performed better at reducing Cd uptake than M1, which may have correlation with the ratio of lime and zeolite in them. Finally, we conclude that between these two amendments, when applied at a moderate level M2 type performed better than M1 in reducing Cd uptake, and also showed positive effects on both gene abundance and increase soil pH.
Afficher plus [+] Moins [-]Source contribution analysis of nutrient pollution in a P-rich watershed: Implications for integrated water quality management
2021
Han, Jianxu | Xin, Zhuohang | Han, Feng | Xu, Bo | Wang, Longfan | Zhang, Chi | Zheng, Yi
It is still a great challenge to address nutrient pollution issues caused by various point sources and non-point sources on the watershed scale. Source contribution analysis based on watershed modeling can help watershed managers identify major pollution sources, propose effective management plans and make smart decisions. This study demonstrated a technical procedure for addressing watershed-scale water pollution problems in an agriculture-dominated watershed, using the Dengsha River Watershed (DRW) in Dalian, China as an example. The SWAT model was improved by considering the constraints of soil nutrient concentration, i.e., nitrogen (N) and phosphorus (P), when modeling the nutrient uptake by a typical crop, corn. Then the modified SWAT model was used to quantify the contributions of all known pollution sources to the N and P pollution in the DRW. The results showed that crop production and trans-administrative wastewater discharge were the two dominant sources of nutrient pollution. This study further examined the responses of nutrient loss and crop yield to different fertilizer application schemes. The results showed that N fertilizer was the limiting factor for crop yield and that excessive levels of P were stored in the agricultural soils of the DRW. An N fertilizer application rate of approximately 40% of the current rate was suggested to balance water quality and environmental protection with crop production. The long-term impact of legacy P was investigated with a 100-year future simulation that showed the crop growth could maintain for 12 years even after P fertilization ceased. Our study highlights the need to consider source attribution, fertilizer application and legacy P impacts in agriculture-dominated watersheds. The analysis framework used in this study can provide a scientifically sound procedure for formulating adaptive and sustainable nutrient management strategies in other study areas.
Afficher plus [+] Moins [-]Nitrous oxide emission and sweet potato yield in upland soil: Effects of different type and application rate of composted animal manures
2021
Ruangcharus, Chuanpit | Kim, Sung Un | Yoo, Ga-young | Choi, Eun-Jung | Kumar, Sandeep | Kang, Namgoo | Hong, Chang Oh
The aims of this study were to determine type and application rate of composted animal manure to optimize sweet potato yield relative to N₂O emissions from upland soils. To this end, the study was conducted on upland soils amended with different types and rates of composted animal manure and located at two geographically different regions of South Korea. Field trials were established at Miryang and Yesan in South Korea during the sweet potato (Ipomoea batatas) growing season over 2 years: 2017 (Year 1) and 2018 (Year 2). Three composted animal manures (chicken, cow, and pig) were applied at the rates of 0, 10, and 20 Mg ha⁻¹ to upland soils in both locations. In both Years and locations, manure type did not affected significantly cumulative N₂O emissions from soil during the sweet potato growing season or the belowground biomass of sweet potato. However, application rate of animal manures affected significantly the cumulative N₂O emission, nitrogen (N) in soil, and belowground biomass of sweet potato. An increase in cumulative N₂O emission with application rates of animal manures was related to total N and inorganic N concentration in soil. The belowground biomass yield of sweet potato but also the cumulative N₂O emission increased with increasing application rate of composted animal manures up to 7.6 and 16.0 Mg ha⁻¹ in Miryang and Yesan, respectively. To reduce N₂O emission from arable soil while increasing crop yield, composted animal manures should be applied at less than application rate that produce the maximum belowground biomass of sweet potato.
Afficher plus [+] Moins [-]