Affiner votre recherche
Résultats 1481-1490 de 7,292
Catalytic hydrogenolysis of plastic to liquid hydrocarbons over a nickel-based catalyst Texte intégral
2022
Zhao, Zhigang | Li, Zheng | Zhang, Xiangkun | Li, Tan | Li, Yuqing | Chen, Xingkun | Wang, Kaige
The catalytic hydrogenolysis of a typical model compound of mulching film waste, polyethylene, was investigated as a potential way to improve economic efficiency of mulching film recycling. Nickel-based heterogeneous catalysts are proposed for polyethylene hydrogenolysis to produce liquid hydrocarbons. Among catalysts supported on various carriers, Ni/SiO₂ catalyst shows the highest activity which may due to the interactions between nickel and silica with the formation of nickel phyllosilicate. As high as 81.18% total gasoline and diesel range hydrocarbon was obtained from the polyethylene hydrogenolysis at relatively mild condition of 280 °C, and 3 MPa cold hydrogen pressure. The result is comparable to what have been reported in previous studies using noble metal catalysts. The gasoline and diesel range hydrocarbon are n-alkanes with a distribution at a range of C₄–C₂₂. The gas products are primarily CH₄ along with a small amount of C₂H₆ and C₃H₈. High yield of CH₄ as much as 9.68% was observed for the cleavage of molecule occurs along the alkane chain.
Afficher plus [+] Moins [-]Effects of ocean acidification and tralopyril on bivalve biomineralization and carbon cycling: A study of the Pacific Oyster (Crassostrea gigas) Texte intégral
2022
Wang, Xu | Li, Ping | Cao, Xuqian | Liu, Bin | He, Shuwen | Cao, Zhihan | Xing, Shaoying | Liu, Ling | Li, Zhi-Hua
The combined effects of emerging pollutants and ocean acidification (OA) on marine organisms and marine ecosystems have attracted increasing attention. However, the combined effects of tralopyril and OA on marine organisms and marine ecosystems remain unclear. In this study, Crassostrea gigas (C. gigas) were exposed to tralopyril (1 μg/L) and/or OA (PH = 7.7) for 21 days and a 14-day recovery acclimation. To investigate the stress response and potential molecular mechanisms of C. gigas to OA and tralopyril exposure alone or in combination, as well as the effects of OA and/or tralopyril on bivalve biomineralization and marine carbon cycling. The results showed that the combined toxicity was between that of acidification and tralopyril alone. Single or combined exposure activated the general stress defense responses of C. gigas mantle, affected energy metabolism and biomineralization of the organism and the carbon cycle of the marine ecosystem. Moreover, acidification-induced and tralopyril-induced toxicity showed potential recoverability at molecular and biochemical levels. This study provides a new perspective on the molecular mechanisms of tralopyril toxicity to bivalve shellfish and reveals the potential role of tralopyril and OA on marine carbon cycling.
Afficher plus [+] Moins [-]Bioremediation of petroleum-contaminated saline soil by Acinetobacter baumannii and Talaromyces sp. and functional potential analysis using metagenomic sequencing Texte intégral
2022
Liu, Xiaoyan | He, Lihong | Zhang, Xinying | Kong, Dewen | Chen, Zongze | Lin, Jia | Wang, Chuanhua
Microbial remediation is a potential remediation method for petroleum-contaminated soil. In order to explore the petroleum degradation mechanism by microorganisms, the oilfield soil was remedied by Acinetobacter baumannii combined with Talaromyces sp. The degradation mechanism was studied by analyzing soil microbial community and functional genes through metagenomics during the degradation process. The result showed the degradation rate of petroleum was 65.6% after 28 days. The concentration of petroleum decreased from 1220 mg/kg to 420 mg/kg. In the co-culture group, Acinetobacter baumannii became the dominant species, the annotated genes of it at the species level accounted for 7.34% while that of Talaromyces sp. accounted for only 0.34%. Meanwhile, the annotated genes of Bacillus, Halomonas, and Nitriliruptor at the genus level were up-regulated by 1.83%, 0.90%, and 0.71%, respectively. In addition, large functional genes were significantly up-regulated, including the peroxisome, P450 enzyme (CYP53, CYP116, CYP102, CYP645), and biofilm formulation, promoting the oxidation and hydroxylation, and catalyzing the epoxidation of aromatic and aliphatic hydrocarbons. Meanwhile, the degrading genes of alkanes and aromatic hydrocarbons were expressed promotionally, and degradation pathways were deduced. In conclusion, the inoculation of Acinetobacter baumannii combined with Talaromyces sp. accelerated the degradation of petroleum in oilfield soil and improved the growth of indigenous petroleum-degrading bacteria. Many functional genes related to petroleum degradation were promoted significantly. These results proved the co-culture of bacteria-fungi consortium contributes to the bioremediation of petroleum-contaminated soil.
Afficher plus [+] Moins [-]Effect of petroleum hydrocarbon pollution levels on the soil microecosystem and ecological function Texte intégral
2022
Gao, Huan | Wu, Manli | Liu, Heng | Xu, Yinrui | Liu, Zeliang
Petroleum hydrocarbon pollution is a global problem. However, the effects of different petroleum pollution levels on soil microbial communities and ecological functions are still not clear. In this study, we analyzed the changes in microbial community structures and carbon and nitrogen transformation functions in oil-contaminated soils at different concentrations by chemical analysis, high-throughput sequencing techniques, cooccurrence networks, and KEGG database comparison functional gene annotation. The results showed that heavy petroleum concentrations (petroleum concentrations greater than 20,000 mg kg⁻¹) significantly decreased soil microbial diversity (p = 0.01), soil microbiome network complexity, species coexistence patterns, and prokaryotic carbon and nitrogen fixation genes. In medium petroleum contamination (petroleum concentrations of between 4000 mg kg⁻¹ and 20,000 mg kg⁻¹), microbial diversity (p > 0.05) and carbon and nitrogen transformation genes showed no evident change but promoted species coexistence patterns. Heavy petroleum contamination increased the Proteobacteria phylum abundance by 3.91%–57.01%, while medium petroleum contamination increased the Actinobacteria phylum abundance by 1.69%–0.26%. The results suggested that petroleum concentrations played a significant role in shifting soil microbial community structures, ecological functions, and species diversities.
Afficher plus [+] Moins [-]Health effects in people relocating between environments of differing ambient air pollution concentrations: A literature review Texte intégral
2022
Edwards, Leslie | Wilkinson, Paul | Rutter, Gemma | Milojevic, Ai
People who relocate to a new environment may experience health effects from a change in ambient air pollution. We undertook a literature review of studies of such relocations and health effects and report the results as a narrative analysis. Fifteen articles of heterogeneous designs met the inclusion criteria. Four short-term (relocation duration less than six months) and three long-term (relocation duration six months or greater) studies reported evidence of the effect of relocation on physiological outcome, biomarkers or symptoms. All had potential weaknesses of design or analysis but, as a whole, their results are broadly consistent in suggesting short-term adverse effects of air pollutants or their reversibility. One long-term study provided evidence that changes in air pollution exposure during adolescence have a measurable effect on lung function growth. Four cohort studies were also identified that used relocation to strengthen evidence of air-pollution-exposure relationships by using a design that incorporates effective randomization of exposure or the use of relocation to improve exposure classification. However, three studies of relocation during pregnancy provided limited evidence to conclude an effect of relocation-related change in exposure on pregnancy outcome. Overall, most relocation studies are consistent with short- or long-term adverse effects of air pollution on biological function or mortality, but many studies of change in exposure have design weaknesses that limit the robustness of interpretation. We outline principles for improved design and analysis to help strengthen future studies for the insights they can provide from their quasi-experimental designs, including on the nature and timing of functional changes of relocation-related changes in exposure to ambient air pollution.
Afficher plus [+] Moins [-]Urban fine particulate matter causes cardiac hypertrophy through calcium-mediated mitochondrial bioenergetics dysfunction in mice hearts and human cardiomyocytes Texte intégral
2022
Zou, Lingyue | Li, Binjing | Xiong, Lilin | Wang, Yan | Xie, Wenjing | Huang, Xiaoquan | Liang, Ying | Wei, Tingting | Liu, Na | Chang, Xiaoru | Bai, Changcun | Wu, Tianshu | Xue, Yuying | Zhang, Ting | Tang, Meng
In recent years, the cardiovascular toxicity of urban fine particulate matter (PM₂.₅) has sparked significant alarm. Mitochondria produce 90% of ATP and make up 30% of the volume of cardiomyocytes. Thus knowledge of myocardial mitochondrial dysfunction due to PM₂.₅ exposure is essential for further cardiotoxic effects. Here, the mechanism of PM₂.₅-induced cardiac hypertrophy through calcium overload and mitochondrial dysfunction was investigated in vivo and in vitro. Male and female BALB/c mice were given 1.28, 5.5, and 11 mg PM₂.₅/kg bodyweight weekly through oropharyngeal inhalation for four weeks and were assigned to low, medium, and high dose groups, respectively. PM₂.₅-induced myocardial edema and cardiac hypertrophy were detected in the high-dose group. Mitochondria were scattered and ruptured with abnormal ultrastructural morphology. In vitro experiments on human cardiomyocyte AC16 showed that exposure to PM₂.₅ for 24 h caused opened mitochondrial permeability transition pore --leading to excessive calcium production, decreased mitochondrial membrane potential, weakened mitochondrial respiratory metabolism capacity, and decreased ATP production. Nevertheless, the administration of calcium chelator ameliorated the mitochondrial damage in the PM₂.₅-treated group. Our in vivo and in vitro results confirmed that calcium overload under PM₂.₅ exposure triggered mTOR/AKT/GSK-3β activation, leading to mitochondrial bioenergetics dysfunction and cardiac hypertrophy.
Afficher plus [+] Moins [-]Foliar application of lambda-cyhalothrin modulates root exudate profile and the rhizosphere bacteria community of dioecious Populus cathayana Texte intégral
2022
He, Yue | Zhu, Zuodong | Zhou, Zhenghu | Lu, Tao | Kumar, Amit | Xia, Zhichao
Dioecious plants show sexual differences in resistance traits to abiotic stresses. However, the effects of exogenous pesticide application on female and male plant growth and their associated adaptation mechanisms are unclear. Our study investigated the effects of the broad-spectrum pesticide lambda-cyhalothrin (λ-CY) on dioecious Populus cathayana growth and explored the factors through which λ-CY changed the rhizosphere bacterial community and physicochemical soil properties via sex-specific metabolomics. The sequential application of λ-CY significantly suppressed male shoot- and root biomass, with little effect on the growth of females. Females possessed a higher intrinsic chemo-diversity within their root exudates, and their levels of various metabolites (sugars, fatty acids, and small organic acids) increased after exposure to λ-CY with consequences on bacterial community composition. Maintaining high bacterial alpha diversity and recruiting specific bacterial groups slowed down the loss of rhizosphere nutrients in females. In contrast, the reduction in bacterial alpha diversity and network structure stability in males was associated with lower rhizosphere nutrient availability. Spearman's correlation analysis revealed that several bacterial groups were positively correlated with the root secretion of lipids and organic acids, suggesting that these metabolites can affect the soil bacterial groups actively involved in the nutrient pool. This study provided novel insights that root exudates and soil microbial interactions may mediate sex-specific differences in response to pesticide application.
Afficher plus [+] Moins [-]Fe3O4-urea nanocomposites as a novel nitrogen fertilizer for improving nutrient utilization efficiency and reducing environmental pollution Texte intégral
2022
Guha, Titir | Gopal, Geetha | Mukherjee, Amitava | Kundu, Rita
Almost 81% of nitrogen fertilizers are applied in form of urea but most of it is lost due to volatilization and leaching leading to environmental pollution. In this regard, slow-release nano fertilizers can be an effective solution. Here, we have synthesized different Fe₃O₄-urea nanocomposites with Fe₃O₄ NPs: urea ratio (1:1, 1:2, 1:3) ie. NC-1, 2, and 3 respectively, and checked their efficacy for growth and yield enhancement. Oryza sativa L. cv. Swarna seedlings were treated with different NCs for 14 days in hydroponic conditions and significant up-regulation of photosynthetic efficiency and nitrogen metabolism were observed due to increased availability of nitrogen and iron. The discriminant functional analysis confirmed that the NC3 treatment yielded the best results so further gene expression studies were performed for NC-3 treated seedlings. Significant changes in expression profiles of ammonia and nitrate transporters indicated that NC-3 treatment enhanced nitrogen utilization efficiency (NUE) due to sustained slow release of urea. From pot experiments, we found significant enhancement of growth, grain nutrient content, and NUE in NC supplemented sets. 1.45 fold increase in crop yield was achieved when 50% N was supplemented in form of NC-3 and the rest in form of ammonium nitrate. NC supplementation can also play a vital role in minimizing the use of bulk N fertilizers because, when 75% of the recommended N dose was supplied in form of NC-3, 1.18 fold yield enhancement was found. Thus our results highlight that, slow-release NC-3 can play a major role in increasing the NUE of rice.
Afficher plus [+] Moins [-]Benzalkonium chlorides (C12) inhibits growth but motivates microcystins release of Microcystis aeruginosa revealed by morphological, physiological, and iTRAQ investigation Texte intégral
2022
Qian, Yao | He, Yixin | Li, Hong | Yi, Meiling | Zhang, Lilan | Zhang, Linjie | Liu, Li | Lu, Zhaohui
Due to the large-scale outbreak of Corona Virus Disease (2019), amounts of disinfecting agents was regularly used in public environments and their potential toxicity towards organisms needed to be appreciated. Thus, one mostly used cationic disinfectant, benzalkonium chlorides (BAC(C12)), was selected to assess its potential toxicity one common cyanobacteria Microcystis aeruginosa (M. aeruginosa) in this study. The aims were to explore the toxic effect and mechanism of BAC (C12) on M. aeruginosa growth within 96 h via morphological, physiological, and the relative and absolute quantification (iTRAQ)-based quantitative proteomics variations. The results found that BAC(C12) significantly inhibited cell density of M. aeruginosa at concentrations from 1 mg/L to 10 mg/L, and the 96-h EC₅₀ value was identified to be 3.61 mg/L. Under EC₅₀ concentration, BAC(C12) depressed the photosynthesis activities of M. aeruginosa exhibited by 36% decline of the maximum quantum yield for primary photochemistry (Fv/Fm) value and denaturation of photosynthetic organelle, caused oxidative stress response displayed by the increase of three indexes including superoxide dismutase (SOD), malondialdehyde (MDA), and the intracellular reactive oxygen species (ROS), and destroyed the integrity of cell membranes demonstrated by TEM images and the increase of ex-cellular substances. Then, the iTRAQ-based proteomic analysis demonstrated that BAC(C12) depressed photosynthesis activities through inhibiting the expressions of photosynthetic protein and photosynthetic electron transport related proteins. The suppression of electron transport also led to the increase of superoxide radicals and then posed oxidative stress on cell. Meantime, the 63.63% ascent of extracellular microcystin production of M. aeruginosa was observed, attributing to the high expression of microcystin synthesis proteins and the damage of cell membrane. In sum, BAC(C12) exposure inhibited the growth of M. aeruginosa mainly by depressing photosynthesis, inducing oxidative stress, and breaking the cell membrane. And, it enhanced the release of microcystin from the cyanobacterial cells via up-regulating the microcystin synthesis proteins and inducing the membrane damage, which could enlarge its toxicity to aquatic species.
Afficher plus [+] Moins [-]Cerium exposure in Lake Taihu water aggravates microcystin pollution via enhancing endocytosis of Microcystis aeruginosa Texte intégral
2022
Yang, Qing | Liu, Yongqiang | Wang, Lihong | Zhou, Qing | Cheng, Mengzhu | Zhou, Jiahong | Huang, Xiaohua
Aggravating the pollution of microcystins (MCs) in freshwater environments is detrimental to aquatic living organisms and humans, and thus threatens the stability of ecosystems. Some environmental factors have been verified to promote the production of MCs in Microcystis aeruginosa, thereby aggravating the pollution of MCs. However, the effects of cerium (Ce), the most abundant rare earth element in global water environments, on the production of MCs in M. aeruginosa are unknown. Here, Lake Taihu water was selected as a representative of freshwater environments. By using interdisciplinary methods, it was found that: (1) the exposure level of Ce [Ce(III) and Ce(IV)] in Lake Taihu water is in the range of 0.271–0.282 μg/L; (2) Ce exposure in Lake Taihu water promoted the contents of three main MCs (MC-LR, MC-LW and MC-YR) in M. aeruginosa and water; (3) a cellular mechanism of Ce promoting the production of MCs in M. aeruginosa in Lake Taihu water was suggested: Ce enhanced endocytosis in cells of M. aeruginosa to promote the essential element uptake by M. aeruginosa for MC synthesis. Thus, Ce exposure in Lake Taihu water aggravates the pollution of MCs via enhancing endocytosis in cells of M. aeruginosa. The results provide reference for assessing the environmental risk of Ce in water environments, investigating the mechanism of the pollution of MCs induced by environmental factors, and developing strategies aimed at preventing and controlling the pollution of MCs.
Afficher plus [+] Moins [-]