Affiner votre recherche
Résultats 1491-1500 de 6,536
Mitigation effects of CO2-driven ocean acidification on Cd toxicity to the marine diatom Skeletonema costatum
2020
Dong, Fang | Wang, Pu | Qian, Wei | Tang, Xing | Zhu, Xiaoshan | Wang, Zhenyu | Cai, Zhonghua | Wang, Jiangxin
Ocean acidification (OA) is a global problem to marine ecosystems. Cadmium (Cd) is a typical metal pollutant, which is non-essential but extremely toxic to marine organisms. The combined effects of marine pollution and climate-driven ocean changes should be considered for the effective marine ecosystem management of coastal areas. Previous reports have separately investigated the influences of OA and Cd pollution on marine organisms. However, little is known of the potential combined effects of OA and Cd pollution on marine diatoms. We investigated the sole and combined influences of OA (1500 ppm CO₂) and Cd exposure (0.4 and 1.2 mg/L) on the coastal diatom Skeletonema costatum. Our results clearly showed that OA significantly alleviated the toxicity of Cd to S. costatum growth and mitigated the oxidant stress, although the intercellular Cd accumulation still increased. OA partially rescued S. costatum from the inhibition of photosynthesis and pyruvate metabolism caused by Cd exposure. It also upregulated genes involved in gluconeogenesis, glycolysis, the citrate cycle (TCA), Ribonucleic acid (RNA) metabolism, and especially the biosynthesis of non-protein thiol compounds. These changes might contribute to algal growth and Cd resistance. Overall, this study demonstrates that OA can alleviate Cd toxicity to S. costatum and explores the potential underlying mechanisms at both the cellular and molecular levels. These results will ultimately help us understand the impacts of combined stresses of climate change and metal pollution on marine organisms and expand the knowledge of the ecological risks of OA.
Afficher plus [+] Moins [-]Detoxification of ochratoxin A by Lysobacter sp. CW239 and characteristics of a novel degrading gene carboxypeptidase cp4
2020
Wei, Wei | Qian, Yingying | Wu, Yanbo | Chen, Ying | Peng, Cheng | Luo, Mingzhong | Xu, Junfeng | Zhou, Yu
Ochratoxin A (OTA) is a potent mycotoxin that frequently contaminates agro-products and threatens food safety. A highly efficient OTA degrading strain Lysobacter sp. CW239 was isolated, and the OTA degradation characteristics were investigated. A novel OTA degrading gene carboxypeptidase cp4 was successfully cloned and characterized from CW239. The heterologous recombinant was constructed by gene cp4 and expression vector pET-32a⁽⁺⁾ and overexpressed by E. coli BL21 CodonPlus™ (DE3). The recombinant protein rCP4 was purified, and the OTA-degrading activity was evaluated. Although OTA was efficiently degraded by CW239 (24-h degradation ratio of 86.2%), the 24-h OTA degradation ratio for rCP4 was only 36.8% at fairly high concentration (0.25 mg/mL) protein. The degraded product was obtained by immune affinity column (IAC) and determined by mass spectrometry (MS), and the degraded product was the less toxic ochratoxin α (OTα). Based on the serial investigations of this study, OTA might be simultaneously co-degraded by CP4 and another unknown degrading agent in that degrading strain.
Afficher plus [+] Moins [-]Methanogenic biodegradation of iso-alkanes and cycloalkanes during long-term incubation with oil sands tailings
2020
Siddique, Tariq | Semple, Kathleen | Li, Carmen | Foght, Julia M.
Microbes indigenous to oil sands tailings ponds methanogenically biodegrade certain hydrocarbons, including n-alkanes and monoaromatics, whereas other hydrocarbons such as iso- and cycloalkanes are more recalcitrant. We tested the susceptibility of iso- and cycloalkanes to methanogenic biodegradation by incubating them with mature fine tailings (MFT) collected from two depths (6 and 31 m below surface) of a tailings pond, representing different lengths of exposure to hydrocarbons. A mixture of five iso-alkanes and three cycloalkanes was incubated with MFT for 1700 d. Iso-alkanes were completely biodegraded in the order 3-methylhexane > 4-methylheptane > 2-methyloctane > 2-methylheptane, whereas 3-ethylhexane and ethylcyclopentane were only partially depleted and methylcyclohexane and ethylcyclohexane were not degraded during incubation. Pyrosequencing of 16S rRNA genes showed enrichment of Peptococcaceae (Desulfotomaculum) and Smithella in amended cultures with acetoclastic (Methanosaeta) and hydrogenotrophic methanogens (Methanoregula and Methanoculleus). Bioaugmentation of MFT by inoculation with MFT-derived enrichment cultures reduced the lag phase before onset of iso-alkane and cycloalkane degradation. However, the same enrichment culture incubated without MFT exhibited slower biodegradation kinetics and less CH₄ production, implying that the MFT solid phase (clay minerals) enhanced methanogenesis. These results help explain and predict continued emissions of CH₄ from oil sands tailings repositories in situ.
Afficher plus [+] Moins [-]WITHDRAWN: New insights into the bioaccumulation of persistent organic pollutants in remote alpine lakes located in Himalayas, Pakistan
2020
Nawab, Javed | Wang, Xiaoping | K̲h̲ān, Sardār | Tang, Yu-Ting | Rahman, Ziaur | ʻAlī, ʻĀbid | Dotel, Jagdish | Li, Gang
This article has been withdrawn at the request of the author(s) and/or editor. The Publisher apologizes for any inconvenience this may cause.The full Elsevier Policy on Article Withdrawal can be found at https://www.elsevier.com/about/our-business/policies/article-withdrawal.
Afficher plus [+] Moins [-]Microplastics and their possible sources: The example of Ofanto river in southeast Italy
2020
Campanale, Claudia | Stock, Friederike | Massarelli, Carmine | Kochleus, Christian | Bagnuolo, Giuseppe | Reifferscheid, Georg | Uricchio, Vito Felice
Monitoring studies have quantified microscopic plastic debris, so-called microplastics, in freshwater systems, including banks, surface waters and sediments. However, there is a lack of knowledge of freshwater and terrestrial environments.When microplastics are released in freshwater environments, they will be transported and will not remain stationary. Moreover, their transport from sink to source (land-based to river systems) may depend on several factors such as weather conditions and river hydrology.The present study aims to investigate the abundance and composition of microplastics in the most important river of Apulia Region (Southeast Italy) evaluating the main drivers and possible input sources of microplastic debris. The following work is the first study showing an Italian river context. For this research five sampling campaigns have been conducted west of the Ofanto river mouth. Microplastics were collected by three surface plankton nets fixed in the middle of the river in order to reduce the spatial and temporal variability. For each campaign, a total of six replicates were sampled during two time slots.Microplastic concentrations ranged from 0.9 ± 0.4 p/m³ to 13 ± 5 p/m³ showing comparable values to or greater than those ones reported in other studies. A statistically significant difference in the average microplastic concentrations in different campaigns of this study has been observed, suggesting thus a temporal variation in plastic abundances. These significant differences could be explained by the hydrology of the river that influences the particle concentration with its physical forces such as flow velocity, water level and seasonal variability. Microplastics were found at higher concentrations during wet periods indicating a land-based origin probably connected to waste produced by the surroundings agricultural areas. In fact, Spearman's correlation results show a strong positive statistically significant correlation between the concentration of microplastics and the water level (R = 0.8475, p < 0.0001).
Afficher plus [+] Moins [-]Electrochemical oxidation of ceftazidime with graphite/CNT-Ce/PbO2–Ce anode: Parameter optimization, toxicity analysis and degradation pathway
2020
Duan, Pingzhou | Gao, Shiheng | Lei, Jiawei | Li, Xiang | Hu, Xiang
In this work, the electrochemical degradation of antibiotic ceftazidime has been studied using a novel rare earth metal Ce and carbon nanotubes codoped PbO₂ electrode. A competitively high oxygen evolution potential (2.4 V) and enhanced catalytic surface area were obtained, evidence by LSV and CV electrochemical characterization. The G/CNT-Ce/PbO₂–Ce electrode possessed a more compact structure and a smaller grain size than the other PbO₂ and Ce–PbO₂ electrodes, exhibiting a prolonged service lifetime, evidence by accelerated lifespan test and recycling degradation experiment. As electrolysis time reached 120 min, the removal efficiency of ceftazidime and TOC arrived at 100.0% and 54.2% respectively in 0.05 M Na₂SO₄ solution containing 50 mg⋅L⁻¹ ceftazidime. The effect of applied current density, pH value, initial ceftazidime concentration and chloride contents on the degradation performance were systematically evaluated. The results demonstrated that electrochemical oxidation of ceftazidime over the G/CNT-Ce/PbO₂–Ce electrode was highly effective, and the mineralization rate was greatly improved, compared with pristine PbO₂ electrode. Considering the toxicity was increased after 30 min electrolysis, the intermediates were quantitatively investigated through HPLC-MS, GC-MS and IC technology. According to the identified products, a reaction mechanism has been proposed and pyridine and aminothiazole were detected with concentration from approximately 1 to 3 mg⋅L⁻¹, which were regarded as toxic byproducts during electrooxidation. Further electrocatalyzing by ring cleavage reaction and complete mineralization to CO₂, NO₃⁻ and NH₄⁺ was proposed, which demonstrated the G/CNT-Ce/PbO₂–Ce electrode exhibited high efficiency for ceftazidime removal in mild conditions.
Afficher plus [+] Moins [-]Formation of chloronitrophenols upon sulfate radical-based oxidation of 2-chlorophenol in the presence of nitrite
2020
Zhao, Xulei | Zhang, Teng | Lu, Junhe | Zhou, Lei | Chovelon, Jean-Marc | Ji, Yuefei
Sulfate radical (SO₄⁻)-based advanced oxidation processes (SR-AOPs) are promising in-situ chemical oxidation technologies widely applied for soil/groundwater remediation. The presence of non-target water constituents may interfere the abatement of contaminants by SR-AOPs as well as result in the formation of unintended byproducts. Herein, we reported the formation of toxic chloronitrophenols during thermally activated persulfate oxidation of 2-chlorophenol (2CP) in the presence of nitrite (NO₂⁻). 2-Chloro-4-nitrophenol (2C4NP) and 2-chloro-6-nitrophenol (2C6NP) were identified as nitrated byproducts of 2CP with total yield up to 90%. The formation of nitrated byproducts is a result of coupling reaction between 2CP phenoxyl radical (ClPhO) and nitrogen dioxide radical (NO₂). As a critical step, the formation of ClPhO was supported by density functional theory (DFT) computation. Both 2C4NP and 2C6NP could convert to 2-chloro-4,6-dinitrophenol (2C46DNP) upon further treatment via a denitration-renitration process. The formation rate of 2C4NP and 2C6NP was closely dependent on the concentration of NO₂⁻, solution pH, and natural water constituents. ECOSAR calculation suggests that chloronitrophenols are generally more hydrophobic and ecotoxic than 2CP. Our result therefore reveals the potential risks in the abatement of chlorophenols by SR-AOP, particularly when high level of NO₂⁻ is present in water matrix.
Afficher plus [+] Moins [-]Estimation of the emissions by transport in two port cities of the northeastern Mediterranean, Greece
2020
Fameli, K.M. | Kotrikla, A.M. | Psanis, C. | Biskos, G. | Polydoropoulou, A.
Air pollution is one of the most important branches of environmental science as it affects human health, climate and ecosystems. Emissions of air pollutants from transport (vehicles and ships) in port cities strongly affect air quality at local scales, warranting for a combination of theoretical and experimental studies to identify pollution hotspots. The purpose of this paper is to provide a methodology for developing a hybrid emission inventory from transport sector for two port cities located respectively on the Northern Aegean islands of Chios and Lesvos. Emission inventories were constructed for the year 2014 based on top-down and bottom-up approaches. Official data from local authorities and survey results were used for the calculation of emissions. Traffic emissions were spatially allocated to the road network based on population data and hourly traffic counts, and distributed over time (on an hourly basis) with the use of local temporal coefficients.Regarding carbon monoxide road emissions, the highest quantities are mainly emitted by Passenger Cars (43%,32% in Chios and Lesvos respectively) while for PM₁₀ emissions, trucks have the largest share (66% in Chios and 86% in Lesvos). The pollutants that are emitted in greater quantities from the ships at the ports of Mytilene and Chios are NOₓ, followed by SO₂ and CO. Most of the ship emissions in the ports occur by the ships at berth, as they remain berthed for hours whereas maneuvering lasts 15–20 min. As for the daily contribution of the two transport sources to the pollution profile of Mytilene, road emissions are higher for almost all pollutants. However, the contribution of ship emissions is not negligible, especially during the touristic period when marine traffic increases and emissions close to the port area become more important than those from road transport.
Afficher plus [+] Moins [-]Characterization of PCN emission and removal from secondary copper metallurgical processes
2020
Dat, Nguyen Duy | Huang, Yong Ji | Chang, Moo Been
This study investigates the characteristics of PCN emission and removal from two secondary copper metallurgical processes (plants A and B) equipped with different air pollution control devices (APCDs). Different operating conditions and feeding materials result in varying emission factors of PCNs from two plants. The average PCN concentration emitted from plant B (7597 ng Nm⁻³) is significantly higher than that emitted from plant A (32.5 ng Nm⁻³) and those reported in China (5.8–2845 ng Nm⁻³). Similar trend is found for fly ash samples collected from two plants. Low chlorinated homologues (Mono-to Tri-CNs) are the major contributors to total PCNs measured in flue gas, fly ash and slag samples. Combination of semi-dry absorber, activated carbon injection and baghouse is effective for PCN removal in plant A, with the overall removal efficiency of 98%. The overall removal efficiency of PCNs achieved with APCDs equipped in plant B is 90%, however, increases of some homologues as the flue gases passing through baghouse and wet scrubber are found, suggesting the occurrence of memory effect within baghouse and wet scrubber.
Afficher plus [+] Moins [-]Immunotoxicity of microplastics and two persistent organic pollutants alone or in combination to a bivalve species
2020
Tang, Yu | Rong, Jiahuan | Guan, Xiaofan | Zha, Shanjie | Shi, Wei | Han, Yu | Du, Xueying | Wu, Fangzhu | Huang, Wei | Liu, Guangxu
Both microplastics and persistent organic pollutants (POPs) are ubiquitously present in natural water environment, posing a potential threat to aquatic organisms. While it has been suggested that the immune responses of aquatic organisms could be hampered by exposure to microplastics and POPs, the synergistic immunotoxic impact of these two types of pollutants remain poorly understood. In addition, little is known about the mechanism behind the immunotoxic effect of microplastics. Therefore, in the present study, the immunotoxicity of microplastics and two POPs, benzo[a]pyrene (B[a]P) and 17β-estradiol (E2), were investigated alone or in combination in a bivalve species, Tegillarca granosa. Evident immunotoxicity, as indicated by alterations of haemocyte count, blood cell composition, phagocytic activity, intracellular content of ROS, concentration of Ca²⁺ and lysozyme, and lysozyme activity, was revealed for both microplastics and the two POPs examined. In addition, the expression of six immune-, Ca²⁺ signalling-, and apoptosis-related genes was significantly altered by exposure of clams to the contaminants studied. Furthermore, the toxicity of POPs was generally aggravated by smaller microplastics (500 nm) and mitigated by larger ones (30 μm). This size dependent effect on POP toxicity may result from size dependent interactions between microplastics and POPs. Data obtained in this study also indicate that similar to exposure to B[a]P and E2, exposure to microplastics may hamper the immune responses of clams through a series of interdependent physiological and molecular processes.
Afficher plus [+] Moins [-]