Affiner votre recherche
Résultats 1491-1500 de 6,548
Maximizing HBr/Br2 in the flue gas and prevention of secondary pollution during the oxy-combustion of brominated waste electrical and electronic equipment part 1- thermodynamic considerations Texte intégral
2020
Farshchi Tabrizi, Farshad | Dunker, Martin | Hiller, Andreas | Beckmann, Michael
Organobromine compounds comprise between 3 and 8% by weight of WEEE and mainly converted to HBr and Br₂ in the incinerator. However, these compounds, during the cooling of the flue gases, can form the PBDD/Fs in the post-combustion area of the furnace. Due to the many benefits of Oxy-combustion process, our group has developed a fluidised bed incinerator for burning the WEEE and plan to maximise HBr/Br₂ in the flue gas. Experimental results presented in the recent papers show that the combustion of the WEEE particles attains quickly to thermodynamic equilibrium. Thermodynamic modelling can, therefore, predict the concentration of brominated pollutants, particularly HBr, Br₂, HgBr₂, and Br˙ in the flue gas. In this paper, the effect of various parameters for increasing the HBr/Br₂ ratio in the flue gas has been investigated. The model shows that the addition of very small amounts of hydrogen in the post-combustion area can convert Br₂ and Br˙ into HBr.
Afficher plus [+] Moins [-]Associations between persistent organic pollutants and endometriosis: A multipollutant assessment using machine learning algorithms Texte intégral
2020
Associations between persistent organic pollutants and endometriosis: A multipollutant assessment using machine learning algorithms Texte intégral
2020
Endometriosis is a gynaecological disease characterised by the presence of endometriotic tissue outside of the uterus impacting a significant fraction of women of childbearing age. Evidence from epidemiological studies suggests a relationship between risk of endometriosis and exposure to some organochlorine persistent organic pollutants (POPs). However, these chemicals are numerous and occur in complex and highly correlated mixtures, and to date, most studies have not accounted for this simultaneous exposure. Linear and logistic regression models are constrained to adjusting for multiple exposures when variables are highly intercorrelated, resulting in unstable coefficients and arbitrary findings. Advanced machine learning models, of emerging use in epidemiology, today appear as a promising option to address these limitations. In this study, different machine learning techniques were compared on a dataset from a case-control study conducted in France to explore associations between mixtures of POPs and deep endometriosis. The battery of models encompassed regularised logistic regression, artificial neural network, support vector machine, adaptive boosting, and partial least-squares discriminant analysis with some additional sparsity constraints. These techniques were applied to identify the biomarkers of internal exposure in adipose tissue most associated with endometriosis and to compare model classification performance. The five tested models revealed a consistent selection of most associated POPs with deep endometriosis, including octachlorodibenzofuran, cis-heptachlor epoxide, polychlorinated biphenyl 77 or trans-nonachlor, among others. The high classification performance of all five models confirmed that machine learning may be a promising complementary approach in modelling highly correlated exposure biomarkers and their associations with health outcomes. Regularised logistic regression provided a good compromise between the interpretability of traditional statistical approaches and the classification capacity of machine learning approaches. Applying a battery of complementary algorithms may be a strategic approach to decipher complex exposome-health associations when the underlying structure is unknown.
Afficher plus [+] Moins [-]Associations between persistent organic pollutants and endometriosis: A multipollutant assessment using machine learning algorithms Texte intégral
2020
Matta, Komodo | Vigneau, Evelyne | Cariou, Véronique | Mouret, Delphine | Ploteau, Stéphane | Le Bizec, Bruno | Antignac, Jean-Philippe | Cano-Sancho, Germán | Laboratoire d'étude des Résidus et Contaminants dans les Aliments (LABERCA) ; École nationale vétérinaire, agroalimentaire et de l'alimentation Nantes-Atlantique (ONIRIS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) | Statistique, Sensométrie et Chimiométrie (StatSC) ; École nationale vétérinaire, agroalimentaire et de l'alimentation Nantes-Atlantique (ONIRIS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) | Centre hospitalier universitaire de Nantes (CHU Nantes)
International audience
Afficher plus [+] Moins [-]In vitro avian bioaccessibility of metals adsorbed to microplastic pellets Texte intégral
2020
Microplastics are known to be associated with co-contaminants, but little is understood about the mechanisms by which these chemicals are transferred from ingested plastic to organisms. This study simulates marine avian gastric conditions in vitro to examine the bioaccessibility of authigenic metals (Fe, Mn) and trace metals (Co, Pb) that have been acquired by polyethylene microplastic pellets from their environment. Specifically, different categories of pellet were collected from beaches in Cornwall, southwest England, and exposed to an acidified saline solution of pepsin (pH ∼ 2.5) at 40 °C over a period of 168 h with extracted metal and residual metal (available to dilute aqua regia) analysed by ICP-MS. For Fe, Mn and Co, kinetic profiles consisted of a relatively rapid initial period of mobilisation followed by a more gradual approach to quasi-equilibrium, with data defined by a diffusion model and median rate constants ranging from about 0.0002 (μg L⁻¹)⁻¹ h⁻¹ for Fe to about 7 (μg L⁻¹)⁻¹ h⁻¹ for Co. Mobilisation of Pb was more complex, with evidence of secondary maxima and re-adsorption of the metal to the progressively modified pellet surface. At the end of the time-courses, maximum total concentrations were 38.9, 0.81, 0.014 and 0.10 μg g⁻¹ for Fe, Mn, Co and Pb, respectively, with maximum respective percentage bioaccessibilities of around 60, 80, 50 and 80. When compared with toxicity reference values for seabirds, the significance of metals acquired by microplastics from the environment and exposed to avian digestive conditions is deemed to be low, but studies of a wider range of plastics and metal associations (e.g. as additives) are required for a more comprehensive risk assessment.
Afficher plus [+] Moins [-]Effects of the long-term application of atrazine on soil enzyme activity and bacterial community structure in farmlands in China Texte intégral
2020
Liu, Yufei | Fan, Xiaoxu | Zhang, Tong | He, Wenyuan | Song, Fuqiang
Atrazine has been used on Chinese farmlands for a long time and over a wide range. The concentration of atrazine (1.86–1100 mg kg⁻¹) has exceeded the allowable limit in the soil (1.0 mg kg⁻¹), and concern is increasing about the potential harm to farmland soil. Four treatments (AT₀, AT₆, AT₁₀, AT₁₆) were established to reveal the effects of the long-term application of atrazine on soil health. The results showed a nonlinear regulation of the atrazine residue concentrations in the four treatments. The highest concentration of atrazine residue was in AT₆, at 167 mg kg⁻¹, and the lowest concentration of atrazine residue was in AT₁₆, at 102 mg kg⁻¹, but there was no significant difference between AT₁₀ and AT₁₆. The soil urease activity decreased significantly with the increase in the years of atrazine application, the saccharase and cellulase activities in the AT₆ were significantly higher than those observed in the other three treatments, the catalase activity gradually decreased with the increase in atrazine application years, and the activity in AT₆ was significantly higher than that in AT₁₆. A total of 238 genera were identified by Illumina MiSeq sequencing, and 28 dominant genera were screened. Atrazine significantly increased the relative abundance of Actinobacteria and contributed to the relative abundance of Rubrobacter, Blastococcus, Promicromonospora, Jiangella, Psychroglaciecola and Acetobacteraceae_uncultured, which exhibited significantly higher abundance in AT₁₆ than in AT₀. Although there were atrazine-degrading bacteria in the soil, and the atrazine residue decreased with the increase in application years, the concentration of the atrazine residue was still nearly 100 times higher than the allowable limit in the soil, which is a great threat to the soil health.
Afficher plus [+] Moins [-]Polycyclic aromatic hydrocarbons exposure and their joint effects with age, smoking, and TCL1A variants on mosaic loss of chromosome Y among coke-oven workers Texte intégral
2020
Liu, Yuhang | Bai, Yansen | Wu, Xiulong | Li, Guyanan | Wei, Wei | Fu, Wenshan | Wang, Gege | Feng, Yue | Meng, Hua | Li, Hang | Li, Mengying | Guan, Xin | Zhang, Xiaomin | He, Meian | Wu, Tangchun | Kwok, Woon
Mosaic loss of chromosome Y (mLOY) is the most common structure somatic event that related to increased risks of various diseases and mortality. Environmental pollution and genetic susceptibility were important contributors to mLOY. We aimed to explore the associations of polycyclic aromatic hydrocarbons (PAHs) exposure, as well as their joint effects with age, smoking, and genetic variants on peripheral blood mLOY. A total of 1005 male coke-oven workers were included in this study and their internal PAHs exposure levels of 10 urinary PAH metabolites and plasma benzo[a]pyrene-r-7,t-8,t-9,c-10-tetrahydotetrol-albumin (BPDE-Alb) adducts were measured. mLOY was defined by the median log R ratio(mLRR) of 1480 probes in male-specific region of chromosome-Y from genotyping array. We found that the PAHs exposure levels were linearly associated with mLOY. A 10-fold increase in urinary 1-hydroxynaphthalene (1-OHNa), 1-hydroxyphenanthrene (1-OHPh), 2-OHPh, 1-hydroxypyrene (1-OHP), ΣOH-PAHs, and plasma BPDE-Alb adducts could generate 0.0111, 0.0085, 0.0069, 0.0103, 0.0134, and 0.0152 decrease in mLRR-Y, respectively. Additionally, mLOY accelerated with age, smoking pack-years, and TCL1A rs1122138-C allele, and we observed the most severe mLOY among subjects carrying more than 3 of the above risk factors. Our results revealed the linear dose-effect associations between PAHs exposure and mLOY. Elder male smokers carrying rs1122138CC genotype were the most susceptible subpopulations to mLOY, who should be given protections for PAHs exposure induced chromosome-Y aberration.
Afficher plus [+] Moins [-]Carotenoid- but not melanin-based plumage coloration is negatively related to metal exposure and proximity to the road in an urban songbird Texte intégral
2020
Grunst, Melissa L. | Grunst, Andrea S. | Pinxten, Rianne | Bervoets, Lieven | Eens, Marcel
Rapid urbanization is a global phenomenon that is increasingly exposing organisms to novel stressors. These novel stressors can affect diverse aspects of organismal function, including development of condition-dependent ornaments, which play critical roles in social and sexual selection. We investigated the relationship between metal pollution, proximity to roads, and carotenoid- and melanin-based plumage coloration in a common songbird, the great tit (Parus major). We studied populations located across a well-characterized metal pollution gradient and surrounded by roadway networks. Metal exposure and road-associated pollution could reduce carotenoid-based pigmentation by inducing oxidative stress or affecting habitat quality, but metals could also enhance melanin-based pigmentation, through effects on melanogenesis and testosterone concentrations. Using a large sample size (N > 500), we found that birds residing close to a point source for metals had reduced ultraviolet chroma, a component of carotenoid-based pigmentation. Moreover, birds with high feather metal concentrations had lower carotenoid chroma, hue, and ultraviolet chroma, with effects modified by age class. Birds residing closer to roads also had lower carotenoid chroma and hue. Melanin-based pigmentation showed high between-year repeatability, and no association with anthropogenic pollution. Results suggest that carotenoid-, but not melanin-, based pigmentation is negatively affected by multiple anthropogenic stressors. We are the first to demonstrate a negative association between roads and a plumage-based signaling trait, which could have important implications for sexual signaling dynamics in urban landscapes.
Afficher plus [+] Moins [-]Influence of dike-induced morphologic and sedimentologic changes on the benthic ecosystem in the sheltered tidal flats, Saemangeum area, west coast of Korea Texte intégral
2020
Kim, Dohyeong | Jo, Joohee | Kim, Bora | Ryu, Jongseong | Choi, Kyungsik
The effects of dike construction on the geomorphology and sedimentary processes of tidal flats were investigated using high-precision topographic profiling, short cores, and unmanned aviation vehicle (UAV)-assisted photogrammetry to understand their adverse consequences on the benthic ecosystem. Tidal flats at the south of Shinsi Island near one of the two sluice gates of the Saemangeum dike, display prominent morphologic features known as shelly sand ridges or cheniers (sensu Otvos, 2000) that have migrated landward about 5 m in a year. The tidal flats were dominated by erosion from winter to spring and by deposition during the remainder of the year except for the periods of heavy precipitation when tidal drainage channels became larger and deeper by headward erosion. With overall coarser-grained surface sediments, the presence of actively migrating wave-built cheniers are in stark contrast to muddy tidal flats with a monotonous morphology before the completion of the Saemangeum dike in 2006. Southeasterly waves reflected from the dike during winter to spring when north to northwesterly winds prevail account for the wave-induced onshore sediment transport and rapid morphologic changes in the tidal flats despite their location protected from offshore waves. The diversity and biomass of major macrofauna species tend to increase during rapid erosion and decrease during rapid deposition, highlighting the anthropogenic effect of dike-induced physical disturbance on the benthic ecosystem in the otherwise sheltered tidal flats.
Afficher plus [+] Moins [-]Highly efficient adsorption behavior and mechanism of Urea-Fe3O4@LDH for triphenyl phosphate Texte intégral
2020
Hao, Mengjie | Gao, Pan | Yang, Dian | Chen, Xuanjin | Xiao, Feng | Yang, Shaoxia
The emergence of organophosphorus flame retardants and the efficient removal from aquatic environments have aroused increasing concerns. The Urea functionalized Fe₃O₄@LDH (Urea-Fe₃O₄@LDH) was prepared and used to adsorb triphenyl phosphate (tphp) for the first time. The tphp adsorption capacity was up to 589 mg g⁻¹, and the adsorption rate reached 49.9 mg g⁻¹ min⁻¹. Moreover, the influences of various environmental factors (pH, ionic strength and organic matter) on the tphp adsorption on the Urea-Fe₃O₄@LDH were investigated. The initial pH of the solution significantly affected the tphp adsorption, whereas the ionic strength and HA slightly affected the adsorption. The main adsorption mechanism was attributed to electrostatic interaction and π-π interaction. We believe that urea is one of excellent functional groups for the tphp adsorption removal and the materials with urea groups as the adsorbents exhibit good prospects in the future.
Afficher plus [+] Moins [-]Influence of dietary iron exposure on trace metal homeostasis and expression of metal transporters during development in zebrafish☆ Texte intégral
2020
Chandrapalan, Theanuga | Kwong, Raymond W.M.
The present study investigated the effects of dietary iron (Fe) exposure on physiological performance and homeostatic regulation of trace metals during development (5–28 days post-fertilization; dpf) in zebrafish (Danio rerio). The results demonstrated that whole body Fe content was increased in 14 dpf larvae fed a high Fe diet. Cumulative mortality was also significantly elevated during exposure to the high Fe diet. Using droplet digital PCR, we observed that high Fe-exposed larvae exhibited an increase in mRNA levels of the Fe-storage protein ferritin, which appeared to be associated with the elevated level of whole body Fe content. Further, the results indicated that dietary Fe exposure induced transient changes in the mRNA expression levels of various metal transporters, including the iron transporter dmt1, and the zinc transporters zip8 and zip14. The expression of the epithelial Ca²⁺ channels (i.e., ecac) was also found to increase by high dietary Fe. Overall, our findings suggest that larval fish during the early nutritional transition period are sensitive to the effects of dietary Fe.
Afficher plus [+] Moins [-]Assessing the PM2.5 impact of biomass combustion in megacity Dhaka, Bangladesh Texte intégral
2020
Rahman, Md Mostafijur | Begum, Bilkis A. | Hopke, Philip K. | Nahar, Kamrun | Thurston, George D.
In Dhaka, Bangladesh, fine particulate matter (PM₂.₅) air pollution shows strong seasonal trends, with significantly higher mean concentrations during winter than during the monsoon (winter = 178.1 μg/m³ vs. monsoon = 30.2 μg/m³). Large-scale open burning of post-harvest agricultural waste across the Indo-Gangetic Plain is a major source of PM₂.₅ air pollution in northern India during the non-monsoon period. This study evaluates the extent to which the seasonal differences in PM₂.₅ pollution concentrations in Dhaka are accounted for by biomass-burning vs. fossil-fuel combustion sources. To assess this, an index was developed based on elemental potassium (K) as a marker for biomass particulate matter, after adjusting for soil-associated K contributions. Alternatively, particulate sulfur was employed as a tracer index for fossil-fuel combustion PM₂.₅. By simultaneously regressing total PM₂.₅ on S and adjusted K, the PM₂.₅ mass for each day was apportioned into: 1) fossil-fuels combustion associated PM₂.₅; 2) biomass-burning associated PM₂.₅; and, 3) all other PM₂.₅. The results indicated that fossil-fuel combustion contributed 21.6% (19.5 μg/m³), while biomass contributed 40.2% (36.3 μg/m³) of overall average PM₂.₅ from September 2013 to December 2017. However, the mean source contributions varied by season: PM₂.₅ in Dhaka during the monsoon season was dominated by fossil-fuels sources (44.3%), whereas PM₂.₅ mass was dominated by biomass-burning (41.4%) during the remainder of the year. The contribution to PM₂.₅ and each of its source components by transport of pollution into Dhaka during non-monsoon time was also evaluated by: 1) Conditional bivariate (CBPF) and pollution rose plots; 2) Concentration weighted trajectories (CWT), and; 3) NASA satellite photos to identify aerosol loading and fire locations on high pollution days. The collective evidence indicates that, while the air pollution in Dhaka is contributed to by both local and transboundary sources, the highest pollution days were dominated by biomass-related PM₂.₅, during periods of crop-burning in the Indo-Gangetic Plain.
Afficher plus [+] Moins [-]