Affiner votre recherche
Résultats 151-160 de 7,921
Accumulation, speciation and localization of silver nanoparticles in the earthworm Eisenia fetida
2021
Courtois, Pauline | Rorat, Agnieszka | Lemiere, Sébastien | Levard, Clément | Chaurand, Perrine | Grobelak, Anna | Lors, Christine | Vandenbulcke, Franck | Laboratoire de Génie Civil et Géo-Environnement (LGCgE) - ULR 4515 (LGCgE) ; Université d'Artois (UA)-Université de Lille-Ecole nationale supérieure Mines-Télécom Lille Douai (IMT Lille Douai) ; Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT)-JUNIA (JUNIA) ; Université catholique de Lille (UCL)-Université catholique de Lille (UCL) | Centre Européen de Recherche et d'Enseignement des Géosciences de l'Environnement (CEREGE) ; Institut de Recherche pour le Développement (IRD)-Aix Marseille Université (AMU)-Collège de France (CdF (institution))-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) | Częstochowa University of Technology | Ecole nationale supérieure Mines-Télécom Lille Douai (IMT Nord Europe) ; Institut Mines-Télécom [Paris] (IMT) | Centre for Materials and Processes (CERI MP - IMT Nord Europe) ; Ecole nationale supérieure Mines-Télécom Lille Douai (IMT Nord Europe) ; Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT)
International audience | The use of silver nanoparticles (AgNPs) in agriculture and many consumer products has led to a significant release of Ag in the environment. Although Ag toxicity in terrestrial organisms has been studied extensively, very little is known about the accumulation capacity and coping mechanisms of organisms in Ag-contaminated soil. In this context, we exposed Eisenia fetida earthworms to artificial OECD soil spiked with a range of concentrations of Ag (AgNPs or AgNO3). The main aims were to (1) identify the location and form of accumulation of Ag in the exposed earthworms and (2) better understand the physiological mechanisms involved in Ag detoxification. The results showed that similar doses of AgNPs or AgNO3 did not have the same effect on E. fetida survival. The two forms of Ag added to soil exhibited substantial differences in speciation at the end of exposure, but the Ag speciation and content of Ag in earthworms were similar, suggesting that biotransformation of Ag occurred. Finally, 3D images of intact earthworms obtained by X-ray micro-computed tomography revealed that Ag accumulated preferentially in the chloragogen tissue, coelomocytes, and nephridial epithelium. Thus, E. fetida bioaccumulates Ag, but a regulation mechanism limits its impact in a very efficient manner. The location of Ag in the organism, the competition between Ag and Cu, and the speciation of internal Ag suggest a link between Ag and the thiol-rich proteins that are widely present in these tissues, most probably metallothioneins, which are key proteins in the sequestration and detoxification of metals.
Afficher plus [+] Moins [-]Root-associated microbiota drive phytoremediation strategies to lead of Sonchus Asper (L.) Hill as revealed by intercropping-induced modifications of the rhizosphere microbiome
2021
Mei, Xinyue | Wang, Ying | Li, Zuran | Larousse, Marie | Péré, Arthur | Rocha, Martine Da | Zhan, Fangdong | He, Yongmei | Pu, Linlong | Panabières, Franck | Zu, Yanqun | Yunnan Agricultural University | Institut Sophia Agrobiotech (ISA) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Côte d'Azur (UniCA) | Yunnan Key Research and Development Project2019BC001-04National Key Research and Development Program of China2018YFC1802603National Natural Science Foundation of China (NSFC)41867055Appeared in source as:National Natural Science Foundation of China31560163Appeared in source as:National Natural Science Foundation of ChinaYunnan Agricultural Foundation Projects2017FG001052China Scholarship CouncilINRAE fellowship (Plant Health and Environment Department)
International audience | Intercropping or assistant endophytes promote phytoremediation capacities of hyperaccumulators and enhance their tolerance to heavy metal (HM) stress. Findings from a previous study showed that intercropping the hyperaccumulator Sonchus asper (L.) Hill grown in HM-contaminated soils with maize improved the remediating properties and indicated an excluder-to-hyperaccumulator switched mode of action towards lead. In the current study, RNA-Seq analysis was conducted on Sonchus roots grown under intercropping or monoculture systems to explore the molecular events underlying this shift in lead sequestering strategy. The findings showed that intercropping only slightly affects S. asper transcriptome but significantly affects expression of root-associated microbial genomes. Further, intercropping triggers significant reshaping of endophytic communities associated with a ‘root-to-shoot’ transition of lead sequestration and improved phytoremediation capacities of S. asper . These findings indicate that accumulator activities of a weed are partially attributed to the root-associated microbiota, and a complex network of plant–microbe-plant interactions shapes the phytoremediation potential of S. asper . Analysis showed that intercropping may significantly change the structure of root-associated communities resulting in novel remediation properties, thus providing a basis for improving phytoremediation practices to restore contaminated soils.
Afficher plus [+] Moins [-]Adsorption and degradation of the herbicide nicosulfuron in a stagnic Luvisol and Vermic Umbrisol cultivated under conventional or conservation agriculture
2021
Cueff, Sixtine | Alletto, Lionel | Dumeny, Valerie | Benoit, Pierre | Pot, Valerie | AGroécologie, Innovations, teRritoires (AGIR) ; Institut National Polytechnique (Toulouse) (Toulouse INP) ; Université de Toulouse (UT)-Université de Toulouse (UT)-Ecole d'Ingénieurs de Purpan (INP - PURPAN) ; Institut National Polytechnique (Toulouse) (Toulouse INP) ; Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) | Ecologie fonctionnelle et écotoxicologie des agroécosystèmes (ECOSYS) ; AgroParisTech-Université Paris-Saclay-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) | Agence de l'Eau Adour-Garonne | Occitanie Region (BAG'AGES project) | Occitanie Region (BAG'AGES CISOL project)
International audience | The main goals of conservation agriculture are to enhance soil fertility and reduce soil degradation, especially through erosion. However, conservation agriculture practices can increase the risk of contamination by pesticides, mainly through vertical transfer via water flow. Better understanding of their sorption and degradation processes is thus needed in conservation agriculture as they control the amount of pesticide available for vertical transfer. The purpose of our study was to investigate the sorption and degradation processes of nicosulfuron in soil profiles (up to 90 cm deep) of a Vermic Umbrisol and a Stagnic Luvisol managed either in conventional or in conservation agriculture. Two laboratory sorption and incubation experiments were performed. Low sorption was observed regardless of the soil type, agricultural management or depth, with a maximum value of 1.3 +/- 2.0 L kg(-1). By the end of the experiment (91 days), nicosulfuron mineralisation in the Vermic Umbrisol was similar for the two types of agricultural management and rather depended on soil depth (29.0 +/- 2.3% in the 0-60-cm layers against 7.5 +/- 1.4% in the 60-90 cm). In the Stagnic Luvisol, nicosulfuron mineralisation reached similar value in every layer of the conservation agriculture plot (26.5% +/- 0.7%). On the conventional tillage plot, mineralisation decreased in the deepest layer (25-60 cm) reaching only 18.4 +/- 6.9% of the applied nicosulfuron. Regardless of the soil type or agricultural management, non-extractable residue formation was identified as the main dissipation process of nicosulfuron (45.1 +/- 8.5% and 50.2 +/- 7.0% under conventional and conservation agriculture respectively after 91 days). In our study, nicosulfuron behaved similarly in the Vermic Umbrisol regardless of the agricultural management, whereas the risk of transfer to groundwater seemed lower in the Stagnic Luvisol under conservation agriculture.
Afficher plus [+] Moins [-]Legacy and emerging halogenated flame retardants in Lake Geneva fish
2021
Babut, Marc | Marchand, Philippe | Vénisseau, Anaïs | Veyrand, Bruno | Ferrari, Benoit J D | RiverLy - Fonctionnement des hydrosystèmes (RiverLy) ; Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) | Laboratoire d'étude des Résidus et Contaminants dans les Aliments (LABERCA) ; École nationale vétérinaire, agroalimentaire et de l'alimentation Nantes-Atlantique (ONIRIS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) | Ecole Polytechnique Fédérale de Lausanne (EPFL)
International audience | Legacy (i.e., polybrominated diphenyl ethers (PBDEs) and hexabromocyclododecane (HBCDD)) and alternative halogenated flame retardants (HFRs) were analyzed in 31 whole fish samples from Lake Geneva in 2018. Two fish species, namely, the burbot (Lota lota) and the roach (Rutilus rutilus), were selected, hypothetically representing different habitats, feeding behaviors, and different metabolic capacities. Roach (N = 20) and burbot (N = 11) displayed similar size and mass, but the latter species was overall leaner than the former. The sum of individual PBDE concentrations (0.54–9.86 ng g−1 wet weight (ww)) was similar in both species, but the respective molecular profiles suggested contrasted metabolic capacities. HBCDD sum of isomer concentrations ranged from non-detected to 3.477 ng g−1 (ww), also similar in both species. Both PBDEs and HBCDD levels were far below the threshold that indicates a risk to fish predators. Referring to previous surveys, which involved a wider range of species, PBDE concentrations have declined or are stable. HBCDD concentrations remained low, despite the PBDE ban, which could have fostered the consumption of other HFRs. The occurrence of alternative HFRs was also low for most compounds analyzed. Only dechloranes and decabromodiphenyl ethane (DBDPE) had detection rates above 50%. Dechloranes spanned a concentration range between 5 and 10 times the quantification limits (0.002 to 0.005 ng g−1 wet weight), lower than DBDPE (< 0.005 to 2.89 ng g−1 wet weight). Quality standards targeting biota are currently missing for these emerging chemicals.
Afficher plus [+] Moins [-]Salinization of Alpine rivers during winter months
2021
Niedrist, Georg | Cañedo-Argüelles, Miguel | Cauvy-Fraunié, Sophie | Leopold Franzens Universität Innsbruck - University of Innsbruck | University of Barcelona | RiverLy - Fonctionnement des hydrosystèmes (RiverLy) ; Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) | -University of Innsbruck -MECODISPER project - Spanish Ministerio de Economia, Industria y Competitividad -Agencia Estatal de Investigacion : CTM2017-89295-P-European Commission
International audience | Human-induced (i.e., secondary) salinization affects aquatic biodiversity and ecosystem functioning worldwide. While agriculture or resource extraction are the main drivers of secondary salinization in arid and semi-arid regions of the world, the application of deicing road salt in winter can be an important source of salts entering freshwaters in cold regions. Alpine rivers are probably affected by salinization, especially in highly populated mountain regions, although this remains to be explored. In this study, we analyzed multi-year conductance time series from four rivers in the European Alps and demonstrated that the application of deicing road salt is linked to peaking rivers’ salinity levels during late winter/early spring. Especially in small catchments with more urban surfaces close to the rivers, conductance increased during constant low-flow periods in late winter and was less correlated with discharge than in summer. Thus, our results suggest that small rivers highly connected to urban infrastructures are prone to considerable salinity peaks during late winter/early spring. Given the low natural level of salinities in Alpine rivers, the aquatic biodiversity might be significantly affected by the recorded changes in conductance, with potential consequences on ecosystem functioning. Thereby, we urge the research community to assess the impact of secondary salinization in Alpine rivers and call for an implementation of management practices to prevent the degradation of these pristine and valuable ecosystems.
Afficher plus [+] Moins [-]Source apportionment of soil heavy metals using robust spatial receptor model with categorical land-use types and RGWR-corrected in-situ FPXRF data
2021
Qu, Mingkai | Chen, Jian | Huang, Biao | Zhao, Yongcun
High-density samples are usually a prerequisite for obtaining high-precision source apportionment results in large-scale areas. In-situ field portable X-ray fluorescence spectrometry (FPXRF) is a fast and cheap way to increase the sample size of soil heavy metals (HMs). Moreover, categorical land-use types may be closely associated with source contributions. However, the above information has rarely been incorporated into the source apportionment. In this study, robust geographically weighted regression (RGWR) was first used to correct the spatially varying effect of the related soil factors (e.g., soil water and soil organic matter) on in-situ FPXRF in an urban-rural fringe of Wuhan City, China, and the correction accuracy of RGWR was compared with those of the traditionally non-spatial multiple linear regression (MLR) and basic GWR. Then, the effect of land-use types on HM concentrations was partitioned using analysis of variance (ANOVA). Last, based on the robust spatial receptor model (i.e., robust absolute principal component scores/RGWR [RAPCS/RGWR]), this study proposed RAPCS/RGWR with categorical land-use types and RGWR-corrected in-situ FPXRF data (RAPCS/RGWR_LU&FPXRF), and its performance was compared with those of RAPCS/RGWR with none or one kind of auxiliary data. Results showed that (i) the performances of the correction models for in-situ FPXRF data were in the order of RGWR > GWR > MLR, and the relative improvement of RGWR over MLR ranged from 52.6% to 70.71% for each HM; (ii) categorical land-use types significantly affected the concentrations of soil Zn, Cu, As, and Pb; (iii) the highest estimation accuracy for source contributions was obtained by RAPCS/RGWR_LU&FPXRF, and the lowest estimation accuracy was obtained by basic RAPCS/RGWR. It is concluded that land-use types and RGWR-corrected in-situ FPXRF data are closely associated with the source contribution, and RAPCS/RGWR_LU&FPXRF is a cost-effective source apportionment method for soil HMs in large-scale areas.
Afficher plus [+] Moins [-]Multisystemic alterations in humans induced by bisphenol A and phthalates: Experimental, epidemiological and clinical studies reveal the need to change health policies
2021
Martínez-Ibarra, A. | Martínez-Razo, L.D. | MacDonald-Ramos, K. | Morales-Pacheco, M. | Vázquez-Martínez, E.R. | López-López, M. | Rodríguez Dorantes, M. | Cerbón, M.
A vast amount of evidence indicates that bisphenol A (BPA) and phthalates are widely distributed in the environment since these compounds are mass-produced for the manufacture of plastics and plasticizers. These compounds belong to a large group of substances termed endocrine-disrupting chemicals (EDC). It is well known that humans and living organisms are unavoidably and unintentionally exposed to BPA and phthalates from food packaging materials and many other everyday products. BPA and phthalates exert their effect by interfering with hormone synthesis, bioavailability, and action, thereby altering cellular proliferation and differentiation, tissue development, and the regulation of several physiological processes. In fact, these EDC can alter fetal programming at an epigenetic level, which can be transgenerational transmitted and may be involved in the development of various chronic pathologies later in the adulthood, including metabolic, reproductive and degenerative diseases, and certain types of cancer.In this review, we describe the most recent proposed mechanisms of action of these EDC and offer a compelling selection of experimental, epidemiological and clinical studies, which show evidence of how exposure to these pollutants affects our health during development, and their association with a wide range of reproductive, metabolic and neurological diseases, as well as hormone-related cancers. We stress the importance of concern in the general population and the urgent need for the medical health care system to closely monitor EDC levels in the population due to unavoidable and involuntary exposure to these pollutants and their impact on human health.
Afficher plus [+] Moins [-]Dynamic model to predict the association between air quality, COVID-19 cases, and level of lockdown
2021
Tadano, Yara S. | Potgieter-Vermaak, Sanja | Kachba, Yslene R. | Chiroli, Daiane M.G. | Casacio, Luciana | Santos-Silva, Jéssica C. | Moreira, Camila A.B. | Machado, Vivian | Alves, Thiago Antonini | Siqueira, Hugo | Godoi, Ricardo H.M.
Studies have reported significant reductions in air pollutant levels due to the COVID-19 outbreak worldwide global lockdowns. Nevertheless, all of the reports are limited compared to data from the same period over the past few years, providing mainly an overview of past events, with no future predictions. Lockdown level can be directly related to the number of new COVID-19 cases, air pollution, and economic restriction. As lockdown status varies considerably across the globe, there is a window for mega-cities to determine the optimum lockdown flexibility. To that end, firstly, we employed four different Artificial Neural Networks (ANN) to examine the compatibility to the original levels of CO, O₃, NO₂, NO, PM₂.₅, and PM₁₀, for São Paulo City, the current Pandemic epicenter in South America. After checking compatibility, we simulated four hypothetical scenarios: 10%, 30%, 70%, and 90% lockdown to predict air pollution levels. To our knowledge, ANN have not been applied to air pollution prediction by lockdown level. Using a limited database, the Multilayer Perceptron neural network has proven to be robust (with Mean Absolute Percentage Error ∼ 30%), with acceptable predictive power to estimate air pollution changes. We illustrate that air pollutant levels can effectively be controlled and predicted when flexible lockdown measures are implemented. The models will be a useful tool for governments to manage the delicate balance among lockdown, number of COVID-19 cases, and air pollution.
Afficher plus [+] Moins [-]Size-dependent impact of polystyrene microplastics on the toxicity of cadmium through altering neutrophil expression and metabolic regulation in zebrafish larvae
2021
Qin, Li | Duan, Zhenghua | Cheng, Haodong | Wang, Yudi | Zhang, Haihong | Zhu, Zhe | Wang, Lei
Insufficient evidence exists regarding the visible physiological toxic endpoints of MPs exposures on zebrafish larvae due to their small sizes. Herein, the impacts of micro-polystyrene particles (μ-PS) and 100 nm polystyrene particles (n-PS) on the toxicity of cadmium (Cd) through altering neutrophil expressions were identified and quantified in the transgenic zebrafish (Danio rerio) larvae Tg(lyz:DsRed2), and the effects were size-dependent. When exposed together with μ-PS, the amount of neutrophils in Cd treated zebrafish larvae decreased by 25.56% through reducing Cd content in the larvae. By contrast, although n-PS exposure caused lower Cd content in the larvae, the expression of neutrophils under their combined exposure remained high. The mechanism of immune toxicity was analyzed based on the results of metabonomics. n-PS induced high oxidative stress in the larvae, which promoted taurine metabolism and unsaturated fatty biosynthesis in n-PS + Cd treatment. This observation was accordance with the significant inhibition of the activities of superoxide dismutase and catalase enzymes detected in their combined treatment. Moreover, n-PS promoted the metabolic pathways of catabolic processes, amino acid metabolism, purine metabolism, and steroid hormone biosynthesis in Cd treated zebrafish larvae. Nanoplasctis widely coexist with other pollutants in the environment at relatively low concentrations. We conclude that more bio-markers of immune impact should be explored to identify their toxicological mechanisms and mitigate the effects on the environment.
Afficher plus [+] Moins [-]Atmospheric particulate represents a source of C8–C12 perfluoroalkyl carboxylates and 10:2 fluorotelomer alcohol in tree bark
2021
Zhao, Nan | Zhao, Meirong | Liu, Weiping | Jin, Hangbiao
In this study, we analyzed 30 legacy and emerging poly- and perfluoroalkyl substances (PFASs) in paired atmospheric particulate and bark samples collected around a Chinese fluorochemical manufacturing park (FMP), with the aim to explore the sources of PFASs in tree bark. The results showed that PFASs in atmospheric particulate and tree bark samples were consistently dominated by perfluorooctanoate (mean 73 ng/g; 44 pg/m³), perfluorohexanoate (47 ng/g; 36 pg/m³), perfluorononanoate (9.1 ng/g; 8.8 pg/m³), and 10:2 fluorotelomer alcohol (10:2 FTOH; 5.6 ng/g; 12 pg/m³). Spatially, concentrations of C₈–C₁₂ perfluoroalkyl carboxylates (PFCAs) and 10:2 FTOH all showed a similar and exponentially decreased trend in both bark and atmospheric particulate samples with the increasing distance from the FMP. For the first time, we observed strongly significant (Spearman’s correlation coefficient = 0.53–0.79, p < 0.01) correlations between bark and atmospheric particulate concentrations for C₈–C₁₂ PFCAs and 10:2 FTOH over 1–2 orders of magnitude, suggesting that the continues trapping of atmospheric particulates resulted in the accumulation of these compounds in bark. Overall, this study provides the first evidence that atmospheric particulate is an obvious source of C₈–C₁₂ PFCAs and 10:2 FTOH in tree bark. This result may further contribute to the application of tree bark as an indicator of certain PFASs in atmospheric particulate.
Afficher plus [+] Moins [-]