Affiner votre recherche
Résultats 1501-1510 de 6,536
Sub micron aerosol variability and its ageing process at a high altitude site in India: Impact of meteorological conditions
2020
Mukherjee, Subrata | Singla, Vyoma | Meena, Guman Singh | Aslam, Mohammad Yusuf | Safai, Pramod Digambar | Buchunde, Pallavi | Vasudevan, Anil Kumar | Jena, Chinmay Kumar | Ghude, Sachin Dinkar | Dani, Kundan | Pandithurai, Govindan
The effect of relative humidity and temperature on the submicron aerosol variability and its ageing process was studied over a high altitude site, Mahabaleshwar in south-west India. The mass composition of non-refractory particulate matter of 1 μm (NR-PM₁) size was obtained using Time of Flight Aerosol Chemical Speciation Monitor (ToF-ACSM) along with the measurements on a few trace gases during winter (December 2017–February 2018) and summer season (20th March - 5th May 2018). Sulfate exhibited strong dependence on the relative humidity (RH) as its mass fraction increased with the increase in RH. The Sulfate oxidation ratio (SOR) calculated during summer season also showed an increasing trend with RH indicating the influence of aqueous phase oxidation on sulfate fraction. On the other hand, OOA showed remarkable enhancement in its mass fraction with the increase in temperature along with the corresponding increase in f₄₄ and tropospheric ozone. OOA, ozone and f₄₄ ratio increased 14–34%, 8–26% and 25–43% respectively with the increase in temperature from 18 to 30 °C. This is indicative of the dominance of photochemical ageing processes during high temperature conditions. The extent of photochemical ageing was found to be higher during summer season (mean temperature ∼25.4 ± 2.6 °C) as compared to winter season (mean temperature ∼20.5 ± 2.6 °C). The nitrate diurnal was majorly governed by gas to particle partitioning process during winter season, whereas the summertime nitrate diurnal was influenced primarily by its formation rate. The non parametric wind regression analysis revealed that the mass concentration during winter was majorly contributed by distant sources from north east direction while during summer the local sources were more dominant.
Afficher plus [+] Moins [-]Spatiotemporal patterns and drivers of soil contamination with heavy metals during an intensive urbanization period (1989–2018) in southern China
2020
Li, Cheng | Sanchez, Georgina M. | Wu, Zhifeng | Cheng, Jiong | Zhang, Siyi | Wang, Qi | Li, Fangbai | Sun, Ge | Meentemeyer, Ross K.
This three-decade long study was conducted in the Pearl River Delta (PRD), a rapidly urbanizing region in southern China. Extensive soil samples for a diverse land uses were collected in 1989 (113), 2005 (1384), 2009 (521), and 2018 (421) for heavy metals of As, Cr, Cd, Cu, Hg, Ni, Pb and Zn. Multiple pollution indices and Structural Equation Models (SEMs) were used in attribution analysis and comprehensive assessments. Data showed that majority of the sampling sites was contaminated by one or more heavy metals, but pollutant concentrations had not reached levels of concerns for food security or human health. There was an increasing trend in heavy metal contamination over time and the variations of soil contamination were site-, time- and pollutant-dependent. Areas with high concentrations of heavy metals overlapped with highly industrialized and populated areas in western part of the study region. A dozen SEMs path analyses were used to compare the relative influences of key environmental factors on soil contamination across space and time. The high or elevated soil contaminations by As, Cr, Ni, Cu and Zn were primarily affected by soil properties during the study period, except 1989–2005, followed by land use patterns. Parent materials had a significant effect on elevated soil contamination of Cd, Cr, Ni, Pb and overall soil pollution during 1989–2005. We hypothesized that other factors not considered in the present study, such as atmospheric deposition, sewage irrigation, and agrochemical uses, may be also important to explain the variability of soil contamination. This study implied that strategies to improve soil physiochemical properties and optimize landscape structures are viable methods to mitigate soil contamination. Future studies should monitor pollutant sources identified by this study to fully understand the causes of heavy metal contamination in rapidly industrialized regions in southern China.
Afficher plus [+] Moins [-]Heat shock pretreatment induced cadmium resistance in the nematode Caenorhabditis elegans is depend on transcription factors DAF-16 and HSF-1
2020
Wang, Shunchang | You, Mu | Wang, Chengrun | Zhang, Yuecheng | Fan, Caiqi | Yan, Shoubao
Cadmium (Cd) exposure poses a serious environmental problem due to the metal’s bioaccumulation and difficult to eliminate from body. Understanding the mechanisms of Cd detoxification and resistance can provide insights into methods to protect against the damaging effects of the heavy metal. In the present study, we found that heat shock (HS) pretreatment increased Cd resistance of the nematode Caenorhabditis elegans by reducing the bagging phenotype and protecting the integrity of the intestinal barrier. HS pretreatment increased the expression of heat shock protein-16.2 (HSP-16.2) prior to Cd exposure, and HS-induced Cd resistance was absent in worms with hsp-16.2 loss-of-function mutation. Worm strain with daf-2(e1370) mutation presented enhanced HS-induced Cd resistance, which was eliminated in worm strains of daf-16(mu86) and hsf-1(sy441). HS pretreatment increased DAF-16 nuclear localization and HSF-1 granule formation prior to Cd exposure. DAF-16 and HSF-1 was essential in reducing bagging formation and protecting the integrity of intestinal barrier after HS pretreatment. In conclusion, the present study demonstrated that HS-induced Cd resistance in C. elegans is regulated by the DAF-16/FOXO and HSF-1 pathways through regulation of HSP-16.2 expression.
Afficher plus [+] Moins [-]Degradation of 17β-estradiol by Novosphingobium sp. ES2-1 in aqueous solution contaminated with tetracyclines
2020
Li, Shunyao | Liu, Juan | Sun, Kai | Yang, Zhiyao | Ling, Wanting
17β-estradiol (E2) often coexists with tetracyclines (TCs) in wastewater lagoons at intensive breeding farms, threatening the quality of surrounding water bodies. Microbial degradation is vital in E2 removal, but it is unclear how TCs affect E2 biodegradation. This primary study investigated the mechanisms of E2 degradation by Novosphingobium sp. ES2-1 in the presence of TCs and assessed the removal efficiency of E2 by strain ES2-1 in natural waters containing TCs. E2 biodegradation was unaffected at TCs concentrations below 0.1 mg L⁻¹ yet significantly inhibited at TCs above 10 mg L⁻¹. As elevation of TCs, E2 biodegradation rate constant decreased, and the biodegradation kinetics equation gradually deviated from the pseudo-first-order dynamics model. Importantly, the presence of TCs, especially at high-level concentrations, significantly hindered E2 ring-opening process but promoted the condensation of some phenolic ring-opening products with NH₃, thereby increasing the abundance of pyridine derivatives, which were difficult to decompose over time. Additionally, strain ES2-1 could remove 52.1–100% of nature estrogens in TCs-contaminated natural waters within 7 d. Results revealed the mechanisms of TCs in E2 biodegradation and the performance of a functional strain in estrogen removal in realistic TCs-contaminated aqueous solution.
Afficher plus [+] Moins [-]Estimating natural gas emissions from underground pipelines using surface concentration measurements☆
2020
Cho, Younki | Ulrich, Bridget A. | Zimmerle, Daniel J. | Smits, Kathleen M.
Rapid response to underground natural gas leaks could mitigate methane emissions and reduce risks to the environment, human health and safety. Identification of large, potentially hazardous leaks could have environmental and safety benefits, including improved prioritization of response efforts and enhanced understanding of relative climate impacts of emission point sources. However, quantitative estimation of underground leakage rates remains challenging, considering the complex nature of methane transport processes. We demonstrate a novel method for estimating underground leak rates based on controlled underground natural gas release experiments at the field scale. The proposed method is based on incorporation of easily measurable field parameters into a dimensionless concentration number, ε, which considers soil and fluid characteristics. A series of field experiments was conducted to evaluate the relationship between the underground leakage rate and surface methane concentration data over varying soil and pipeline conditions. Peak surface methane concentrations increased with leakage rate, while surface concentrations consistently decreased exponentially with distance from the source. Deviations between the estimated and actual leakage rates ranged from 9% to 33%. A numerical modeling study was carried out by the TOUGH3 simulator to further evaluate how leak rate and subsurface methane transport processes affect the resulting methane surface profile. These findings show that the proposed leak rate estimation method may be useful for prioritizing leak repair, and warrant broader field-scale method validation studies. A method was developed to estimate fugitive emission rates from underground natural gas pipeline leaks. The method could be applied across a range of soil and surface covering conditions.
Afficher plus [+] Moins [-]Source identification of chromium in the sediments of the Xiaoqing River and Laizhou Bay: A chromium stable isotope perspective
2020
He, Xiaoqing | Chen, Guojun | Fang, Ziyao | Liang, Wenjian | Li, Boda | Tang, Jianhui | Sun, Yongge | Qin, Liping
Hexavalent chromium, Cr(VI), is a heavy metal contaminant and the reduction of Cr(VI) is accompanied by large isotopic fractionation. In this study, the sources of Cr were explored using the Cr isotopic composition of sediments from the Xiaoqing River, a heavily polluted river located in the Shandong Province of China, which flows into Laizhou Bay. The results show that δ⁵³Cr values of the sediments are the highest upstream near the pollution source, and gradually decrease along the river toward the range for igneous reservoirs observed near the estuary. Based on the calculation of authigenic Cr isotopic composition (δ⁵³Crₐᵤₜₕ) using the detrital index and leaching experiments, we suggest that the authigenic Cr in the sample near the pollution source with the highest δ⁵³Crₐᵤₜₕ value mainly comes from the reduction of Cr(VI) discharged by anthropogenic activity, and authigenic Cr in other samples in the midstream with δ⁵³Crₐᵤₜₕ values slightly higher than the range of igneous reservoirs may come from natural oxidative Cr weathering products. By introducing a Rayleigh model, we calculate that at least 31%–55% of Cr(VI) in the river water had been reduced to Cr(III) near the pollution source. Due to the self-purification ability of the river, Cr(VI) was reduced; thus, there is no record of high δ⁵³Crₐᵤₜₕ values in the downstream of the Xiaoqing River and Laizhou Bay, indicating no obvious Cr pollution in these locations. The limited variation of δ⁵³Cr values for samples from a sediment core in Laizhou Bay is also indicative of no obvious Cr pollution in the history. The Cr isotopic compositions of the river sediments are useful for the identification of Cr sources and can be used to advise environmental remediation on Cr pollution.
Afficher plus [+] Moins [-]A new thermoanalytical method for the quantification of microplastics in industrial wastewater
2020
Mallow, Ole | Spacek, Stefan | Schwarzböck, Therese | Fellner, Johann | Rechberger, Helmut
Plastics are crucial for our modern lifestyle and yet pose a major threat to our environment. Rising levels of microplastics (MP) in rivers and oceans are a big challenge for our economy and regulatory institutions as well as from a scientific point of view. Smaller microplastic particles, in particular, are especially hard to identify and even harder to quantify in environmental samples. Hence, we present a novel and inexpensive approach to quantify microplastics (MP) on a weight basis, relying on a thermoanalytical method. The Elemental Analysis combined with Overdetermined Equation Method (EA-OEM) was originally developed for determining the plastic content of refuse-derived fuels. It makes use of the distinct differences in the organic elemental composition (C, H, N, S, O) of plastics, biogenic and inorganic materials to calculate the (micro)plastic content on a detailed weight base. The study presented provides the first experimental results yielded from the application of the EA-OEM and two different laboratory approaches to the analysis of polyethylene (PE) and polypropylene (PP) MP content in industrial effluent samples from one source. In this way, it was possible to ensure that the polymer composition was known and the MP content therein (10–29%) could be derived. Further, the study reveals good MP recovery rates when applying the methodology to PE/PP-spiked samples.
Afficher plus [+] Moins [-]Response of soil microbial communities to engineered nanomaterials in presence of maize (Zea mays L.) plants
2020
Zhang, Wenhui | Jia, Xiaorong | Chen, Si | Wang, Jing | Ji, Rong | Zhao, Lijuan
With the intended application of engineered nanomaterials (ENMs) in agriculture, accurate assessment the effect of these ENMs on soil microbial communities is especially necessary. Here, maize plants were cultivated in soil amended by SiO₂, TiO₂, and Fe₃O₄ ENMs (100 mg kg⁻¹ soil) for four weeks. The impact of ENMs on bacterial community structure of the rhizosphere soil was investigated by using high-throughput sequencing. In addition, metabolites of maize rhizosphere soil were quantified by gas chromatography-mass spectrometry (GC-MS) based metabolomics. We found that the disturbance of ENMs on soil microbes are in the follow of Fe₃O₄>TiO₂>SiO₂. Exposure of Fe₃O₄ ENMs significantly reduced the abundance of nitrogen-fixation related bacteria Bradyrhizobiaceae (from 2.94% to 2.40%) and iron-redox bacteria Sediminibacterium (from 2.15% to 2.07%). Additionally, Fe₃O₄ ENMs significantly increased populations of Nocardioides (from 1.63% to 1.77%), Chitinophaga sancti (from 1.12% to 2.08%), Pantoea (from 1.31% to 2.22%), Rhizobiumand (from 1.41% to 1.74%) and Burkholderia-Paraburkholderia (from 1.50% to 2.09%), which are associated with carbon cycling and plant growth promoting. This study provides a perspective on the response of rhizosphere microbial community and low molecular weight metabolites to ENMs exposure, providing a comprehensive understanding of the environmental risk of ENMs.
Afficher plus [+] Moins [-]Different surface charged plastic particles have different cotransport behaviors with kaolinite ☆particles in porous media
2020
Li, Meng | He, Lei | Zhang, Xiangwei | Rong, Haifeng | Tong, Meiping
The wide utilization of plastic related products leads to the ubiquitous presence of plastic particles in natural environments. Plastic particles could interact with kaolinite (one type of typical clay particles abundant in environments) and form plastic-kaolinite heteroaggregates. The fate and transport of both plastic particles and kaolinite particles thus might be altered. The cotransport and deposition behaviors of micron-sized plastic particles (MPs) with different surface charge (both negative and positive surface charge) with kaolinite in porous media in both 5 and 25 mM NaCl solutions were investigated in present study. Both types of MPs (negatively charged carboxylate-modified MPs (CMPs) and positively charged amine-modified MPs (AMPs)) formed heteroaggregates with kaolinite particles under both solution conditions examined, however, CMPs and AMPs exhibited different cotransport behaviors with kaolinite. Specifically, the transport of both CMPs and kaolinite was increased under both ionic strength conditions when kaolinite and CMPs were copresent in suspensions. While, when kaolinite and positively charged AMPs were copresent in suspensions, negligible transport of both kaolinite and AMPs were observed under examined salt solution conditions. The competition deposition sites by kaolinite (the portion suspending in solution) with CMPs-kaolinite heteroaggregates led to the increased transport both CMPs and kaolinite when both types of colloids were copresent. In contrast, the formation of larger sized AMPs-kaolinite heteroaggregates with surface charge heterogeneity led to the negligible transport of both kaolinite and AMPs when they were copresent in suspensions. The results of this study show that when plastic particles and kaolinite particles are copresent in natural environments, their interaction with each other will affect their transport behaviors in porous media. The alteration in the transport of MPs or kaolinite (either increased or decreased transport) is highly correlated with the surface charge of MPs.
Afficher plus [+] Moins [-]Estimating historical [formula omitted] exposures for three decades (1987–2016) in Japan using measurements of associated air pollutants and land use regression
2020
Araki, Shin | Shima, Masayuki | Yamamoto, Kouhei
Accurate estimation of historical PM2.5 exposures for epidemiological studies is challenging when extensive monitoring data are limited in duration. Here, we develop a national-scale PM2.5 exposure model for Japan using measurements recorded between 2014 and 2016 to estimate monthly means for 1987 through 2016. Our objective is to obtain accurate PM2.5 estimates for years prior to implementation of extensive PM2.5 monitoring, using observations from a limited period. We utilize a neural network to convey the non-linear relationship between the target pollutant and predictors, while incorporating the associated air pollutants. We obtain high R² values of 0.76 and 0.73 through spatial and temporal cross validation, respectively. We evaluate estimation accuracy using an independent data set and achieve an R² of 0.75. Moreover, monthly variations for 2000–2013 are well reproduced with correlation coefficients of greater than 0.78, obtained through a comparison with observations. We estimate monthly means at 1 × 1 km resolution from 1987 through 2016. The estimates show decreases in the area and population weighted means beginning in the 1990s. We successfully estimate monthly mean PM2.5 concentrations over three decades with outstanding predictive accuracy. Our findings illustrate that the presented approach achieves accurate long-term historical estimations using observations limited in duration.
Afficher plus [+] Moins [-]