Affiner votre recherche
Résultats 1531-1540 de 2,459
Oxidative stress—implications, source and its prevention
2014
Rājabīra Kaura, | Jasmit Kaur, | Mahajan, Jyoti | Kumar, Rakesh | Arora, Saroj
Oxidative stress has been a major predicament of present day living. It has been the product of imbalance between the processes involved in free radical generation and their neutralization by enzymatic and non-enzymatic defence mechanisms. The oxidative stress has been contributed by numerous factors including heavy metals, organic compound-rich industrial effluents, air pollutants and changing lifestyle pattern focussing mainly on alcohol consumption, dietary habits, sun exposure, nuclear emissions, etc. The most common outcome of oxidative stress is the increased damage of lipid, DNA and proteins that resulted in the development of different pathologies. Among these pathologies, cancer is the most devastating and linked to multiple mutations arising due to oxidative DNA and protein damage that ultimately affect the integrity of the genome. The chemopreventive agents particularly nutraceuticals are found to be effective in reducing cancer incidences as these components have immense antioxidative, antimutagenic and antiproliferative potentials and are an important part of our dietary components. These secondary metabolites, due to their unique chemical structure, facilitate cell-to-cell communication, repair DNA damage by the downregulation of transcription factors and inhibit the activity of protein kinases and cytochrome P450-dependent mixed function oxidases. These phytochemicals, therefore, are most appropriate in combating oxidative stress-related disorders due to their tendency to exert better protective effect without having any distinct side effect.
Afficher plus [+] Moins [-]Spatial variability of bacteria in the rhizosphere of Elsholtzia splendens under Cu contamination
2014
Yuan, Xiaofeng | Luan, Jing | Shi, Jiyan
Elsholtzia splendens is a well-known Cu-tolerant plant; yet, the impact of Cu-contaminated soil on bacterial community in its rhizosphere is not known. We studied the spatial variability of bacteria in the rhizosphere using Cu-contaminated soil with polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) and real-time PCR. In the uncontaminated soil, the content of the dissolved organic carbon (DOC) and bacterial diversity gradually increased in the rhizosphere soil along the root growth direction (from the interface zone to the meristematic zone), while for the Cu-contaminated soil, the highest DOC content and the strongest potential bioavailability of Cu were found in the interface zone, which also had the lowest bacteria diversity. Bacteria diversity was positively correlated with DOC in the uncontaminated soil (p < 0.01) but not in the contaminated soil. Compared with uncontaminated soil, some species such as Firmicutes only existed in the rhizosphere of contaminated soil, while the very small amount (if any) of some species exists such as Deinococcus-Thermus, indicating that the contaminated environment altered the bacterial composition. Moreover, spatial variation of the bacterial community was found among different soil zones. Real-time PCR confirmed the spatial variation via the gene expression of flagellin (fliC) and chemotaxis gene (cheA). The spatial characteristics of cheA expression were consistent with that of DOC and bacterial diversity. In conclusion, we demonstrated that the spatial variation of the bacterial community in the rhizosphere was present, independent of Cu contamination. DOC and Cu toxicity may affect specific gene expressions such as fliC and cheA, resulting in bacterial spatial variation.
Afficher plus [+] Moins [-]Toxic effect of metal cation binary mixtures to the seaweed Gracilaria domingensis (Gracilariales, Rhodophyta)
2014
Mendes, Luiz Fernando | Stevani, Cassius Vinicius | Zambotti-Villela, Leonardo | Yokoya, Nair Sumie | Colepicolo, Pio
The macroalga Gracilaria domingensis is an important resource for the food, pharmaceutical, cosmetic, and biotechnology industries. G. domingensis is at a part of the food web foundation, providing nutrients and microelements to upper levels. As seaweed storage metals in the vacuoles, they are considered the main vectors to magnify these toxic elements. This work describes the evaluation of the toxicity of binary mixtures of available metal cations based on the growth rates of G. domingensis over a 48-h exposure. The interactive effects of each binary mixture were determined using a toxic unit (TU) concept that was the sum of the relative contribution of each toxicant and calculated using the ratio between the toxicant concentration and its endpoint. Mixtures of Cd(II)/Cu(II) and Zn(II)/Ca(II) demonstrated to be additive; Cu(II)/Zn(II), Cu(II)/Mg(II), Cu(II)/Ca(II), Zn(II)/Mg(II), and Ca(II)/Mg(II) mixtures were synergistic, and all interactions studied with Cd(II) were antagonistic. Hypotheses that explain the toxicity of binary mixtures at the molecular level are also suggested. These results represent the first effort to characterize the combined effect of available metal cations, based on the TU concept on seaweed in a total controlled medium. The results presented here are invaluable to the understanding of seaweed metal cation toxicity in the marine environment, the mechanism of toxicity action and how the tolerance of the organism.
Afficher plus [+] Moins [-]Oxidative injury and antioxidant genes regulation in cadmium-exposed radicles of six contrasted Medicago truncatula genotypes
2014
Rahoui, Sondès | Ben, Cécile | Chaoui, Abdelilah | Martinez, Yves | Yamchi, Ahad | Rickauer, Martina | Gentzbittel, Laurent | El Ferjani, Ezzeddine
Oxidative disorders were triggered in the presence of Cd toxicity in early seedling growth of six Medicago truncatula genotypes. Interactions between root growth inhibition, cadmium uptake, as well as the occurrence of oxidative injury suggest differential responses of the genotypes, with susceptible or tolerant accessions. ROS enhancement was observed in situ and H₂O₂ content was measured, that did not seem related to tolerance or susceptibility. Oxidative burst impact on cell membrane integrity was analyzed in agreement with MDA content and glucose exudation, which suggest an active role of this burst in susceptible lines. Transcriptional changes in response to cadmium treatment were analyzed on target genes involved in (1) ROS-scavenging enzymes (superoxide dismutase (SOD; EC1.15.1.1) and peroxidase (PRX; EC 1.11.1.7)), (2) reduced glutathione (γ-Glu-Cys-Gly, GSH) metabolism (glutathione-S-transferase (GST; EC: 2.5.1.18) and glutathione reductase (GR; EC 1.8.1.7)), and (3) metal-chelating metabolism (PCS). The susceptible line shows no response or non-timely gene expression patterns. This research work gave an overview of the deleterious effects and oxidative injury of cadmium stress in Medicago truncatula. Oxidative defense efficiency and gene upregulation should explain relative tolerance in tested genotypes.
Afficher plus [+] Moins [-]EROD activity and antioxidant defenses of sea bass (Dicentrarchus labrax) after an in vivo chronic hydrocarbon pollution followed by a post-exposure period
2014
Danion, Morgane | Floch, Stéphane Le | Lamour, François | Quentel, Claire
Chronic concentrations of polycyclic aromatic hydrocarbons (PAHs) have been commonly detected in international estuaries ecosystems. Reliable indicators still need to be found in order to properly assess the impact of PAHs in fish. After an in vivo chronic exposure to hydrocarbons, the enzymatic activity of 7-ethoxyresorufin O-deethylase (EROD) and the antioxidant defense system were assessed in sea bass, Dicentrarchus labrax. A total of 45 fish were exposed to the water-soluble fraction of Arabian crude oil, similar to a complex pollution by hydrocarbons chronically observed in situ, while 45 other control fish sustained the same experimental conditions in clean seawater. Fish samples were made after a 21-day exposure period and after a 15-day recovery period in clean fresh water. Throughout the experiment, liver EROD activity was significantly higher in contaminated fish than in control fish. In addition, nonenzymatic (total glutathione) and enzymatic (GPx, SOD, and CAT) antioxidant defense parameters measured in liver were not significantly different in fish. Furthermore, in gills, glutathione content had significantly increased while SOD activity had significantly decreased in contaminated fish compared to controls. On the other hand, CAT and GPx activities were not affected. Chronic exposure to PAHs disturbing the first step (SOD) and inhibiting the second step (GPx and CAT) could induce oxidative stress in tissues by the formation of oxygen radicals. After the postexposure period, there was no significant difference between control and contaminated fish in any of the antioxidant defense parameters measured in gills, attesting to the reversibility of the effects.
Afficher plus [+] Moins [-]Physico-chemical characterisation of glass soiling in rural, urban and industrial environments
2014
Lombardo, T. | Chabas, A. | Verney-Carron, A. | Cachier, H. | Triquet, S. | Darchy, S.
Glass materials are broadly used in the built environment (windows, facades, roofs, museum showcases, and solar panels) due to their optical (transparency) and thermal properties. Their interaction with the multiphase atmospheric medium results in a more or less pronounced transparency loss called soiling. This phenomenon leads to a loss of amenity of artefacts; consequently, high cleaning costs have to be supported by public and private entities. Complete understanding of the nature of surface deposit appears thus extremely important for addressing strategies to control it. The present research is based on the sheltered exposure, in different environments, of durable glass panels during 1 year. At these different locations, airborne pollutant concentrations have also been monitored. Three environments have been investigated: rural (R), urban (U) and industrial (I). Results show that the mass of the deposit and the optical impairment of the glass (haze) are too spread to allow discriminating between different environments. However, the analyses of soluble species and particulate organic matter allow identifying factors responsible for soiling and highlighted the reactivity of deposit to relative humidity which favours post-deposit evolution.
Afficher plus [+] Moins [-]Does area deprivation modify the association between exposure to a nitrate and low-dose atrazine metabolite mixture in drinking water and small for gestational age? A historic cohort study
2014
Limousi, F. | Albouy-Llaty, M. | Carles, C. | Dupuis, A. | Rabouan, S. | Migeot, V.
Birth weight may be influenced by environmental and socio-economic factors that could interact. The main objective of our research was to investigate whether area deprivation may modify the association between drinking water exposure to a mixture of atrazine metabolites and nitrates during the second trimester of pregnancy and prevalence of small for gestational age (SGA) neonates. We conducted a historic cohort study in Deux-Sèvres, France between 2005 and 2010, using birth records, population census and regularly performed drinking water withdrawals at community water systems. Exposure to an atrazine metabolite/nitrate mixture in drinking water was divided into six classes according to the presence or absence of atrazine metabolites and to the terciles of nitrate concentrations in each trimester of pregnancy. We used a logistic regression to model the association between SGA and mixture exposure at the second trimester while taking into account the area deprivation measured by the Townsend index as an effect modifier and controlling for the usual confounders. We included 10,784 woman–neonate couples. The risk of SGA when exposed to second tercile of nitrate without atrazine metabolites was significantly greater in women living in less deprived areas (OR = 2.99; 95 % CI (1.14, 7.89)), whereas it was not significant in moderately and more deprived areas. One of the arguments used to explain this result is the presence of competing risk factors in poorer districts.
Afficher plus [+] Moins [-]Displacement and competitive sorption of organic pollutants on multiwalled carbon nanotubes
2014
Shen, Xiaofang | Wang, Xilong | Tao, Shu | Xing, Baoshan
Displacement of lindane presorbed on the pristine and OH-functionalized multiwalled carbon nanotubes (MWCNTs) by phenanthrene, naphthalene, and atrazine, and competition of these compounds with lindane on the aforementioned sorbents were investigated. Displacement of lindane presorbed on MWCNTs by atrazine, naphthalene, and phenanthrene, and competitive sorption effect of these chemicals with lindane on MWCNTs followed the same order: atrazine > naphthalene > phenanthrene. The lowest competition and displacement of lindane by phenanthrene were mainly because of the strong interactions between these two chemicals, whereas interaction of lindane with atrazine and naphthalene was quite low. The more pronounced displacement of lindane by atrazine than naphthalene and higher competitive sorption of lindane with atrazine than with naphthalene can be ascribed to the larger molecular volume of atrazine; thus, the steric hindrance effect is higher relative to naphthalene. This study is valuable for evaluating influence of the coexisting organic compounds on sorption of primary solute towards MWCNTs in the environment.
Afficher plus [+] Moins [-]Sodium arsenate induce changes in fatty acids profiles and oxidative damage in kidney of rats
2014
Kharroubi, Wafa | Dhibi, Madiha | Mekni, Manel | Haouas, Zohra | Chreif, Imed | Neffati, Fadoua | Hammami, Mohamed | Sakly, Rachid
Six groups of rats (n = 10 per group) were exposed to 1 and 10 mg/l of sodium arsenate for 45 and 90 days. Kidneys from treated groups exposed to arsenic showed higher levels of trans isomers of oleic and linoleic acids as trans C181n-9, trans C18:1n-11, and trans C18:2n-6 isomers. However, a significant decrease in eicosenoic (C20:1n-9) and arachidonic (C20:4n-6) acids were observed in treated rats. Moreover, the “Δ5 desaturase index” and the saturated/polyunsaturated fatty acids ratio were increased. There was a significant increase in the level of malondialdehyde at 10 mg/l of treatment and in the amount of conjugated dienes after 90 days (p < 0.05). Significant kidney damage was observed at 10 mg/l by increase of plasma marker enzymes. Histological studies on the ultrastructure changes of kidney supported the toxic effect of arsenate exposure. Arsenate intoxication activates significantly the superoxide dismutase at 10 mg/l for 90 days, whereas the catalase activity was markedly inhibited in all treated groups (p < 0.05). In addition, glutathione peroxidase activity was significantly increased at 45 days and dramatically declined after 90 days at 10 mg/l (p < 0.05). A significant increase in the level of glutathione was marked for the groups treated for 45 and 90 days at 1 mg/l followed by a significant decrease for rats exposed to 10 mg/l for 90 days. An increase in the level of protein carbonyl was observed in all treated groups (p < 0.05). In conclusion, the present study provides evidence for a direct effect of arsenate on fatty acid (FA) metabolism which concerns the synthesis pathway of n-6 polyunsaturated fatty acids and leads to an increase in the trans FAs isomers. Therefore, FA-induced arsenate kidney damage could contribute to trigger kidney cancer.
Afficher plus [+] Moins [-]Hydrogen sulfide ameliorates lead-induced morphological, photosynthetic, oxidative damages and biochemical changes in cotton
2014
Bharwana, Saima Aslam | Ali, Shafaqat | Farooq, Muhammad Ahsan | Baṣārat Alī, Es. | Iqbal, Naeem | Abbas, Farhat | Ahmad, M. S. A. (Muhammad Sajid Aqeel)
Poisonous lead (Pb), among heavy metals, is a potential pollutant that readily accumulates in soils and thus adversely affects physiological processes in plants. We have evaluated how exogenous H₂S affects cotton plant physiological attributes and Pb uptake under Pb stress thereby understanding the role of H₂S in physiological processes in plants. Two concentrations (0 and 200 μM) of H₂S donor sodium hydrosulfide (NaHS) were experimented on cotton plants under Pb stress (0, 50, and 100 μM). Results have shown that Pb stress decreased plant growth, chlorophyll contents, SPAD value, photosynthesis, antioxidant activity. On the other hand, Pb stress increased the level of malondialdehyde (MDA), electrolyte leakage (EL), and production of H₂O₂and uptake of Pb contents in all three parts of plant, viz. root, stem, and leaf. Application of H₂S slightly increased plant growth, chlorophyll contents, SPAD value, photosynthesis, and antioxidant activity as compared to control. Hydrogen sulfide supply alleviated the toxic effects of lead on plant growth, chlorophyll contents, SPAD value, photosynthesis, and antioxidant activity in cotton plants. Hydrogen sulfide also reduced MDA, EL, and production of H₂O₂and endogenous Pb levels in the three mentioned plant parts. On the basis of our results, we conclude that H₂S has promotive effects which could improve plant survival under Pb stress.
Afficher plus [+] Moins [-]