Affiner votre recherche
Résultats 1581-1590 de 2,512
Can ornamental potted plants remove volatile organic compounds from indoor air? — a review Texte intégral
2014
Dela Cruz, Majbrit | Christensen, Jan H. | Thomsen, Jane Dyrhauge | Müller, Renate
Volatile organic compounds (VOCs) are found in indoor air, and many of these can affect human health (e.g. formaldehyde and benzene are carcinogenic). Plants affect the levels of VOCs in indoor environments, thus they represent a potential green solution for improving indoor air quality that at the same time can improve human health. This article reviews scientific studies of plants’ ability to remove VOCs from indoor air. The focus of the review is on pathways of VOC removal by the plants and factors affecting the efficiency and rate of VOC removal by plants. Laboratory based studies indicate that plant induced removal of VOCs is a combination of direct (e.g. absorption) and indirect (e.g. biotransformation by microorganisms) mechanisms. They also demonstrate that plants’ rate of reducing the level of VOCs is influenced by a number of factors such as plant species, light intensity and VOC concentration. For instance, an increase in light intensity has in some studies been shown to lead to an increase in removal of a pollutant. Studies conducted in real-life settings such as offices and homes are few and show mixed results.
Afficher plus [+] Moins [-]Tire tread wear particles in ambient air—a previously unknown source of human exposure to the biocide 2-mercaptobenzothiazole Texte intégral
2014
Avagyan, Rozanna | Sadiktsis, Ioannis | Bergvall, Christoffer | Westerholm, Roger
Urban particulate matter (PM), asphalt, and tire samples were investigated for their content of benzothiazole and benzothiazole derivates. The purpose of this study was to examine whether wear particles, i.e., tire tread wear or road surface wear, could contribute to atmospheric concentrations of benzothiazole derivatives. Airborne particulate matter (PM₁₀) sampled at a busy street in Stockholm, Sweden, contained on average 17 pg/m³ benzothiazole and 64 pg/m³ 2-mercaptobenzothiazole, and the total suspended particulate-associated benzothiazole and 2-mercaptobenzothiazole concentrations were 199 and 591 pg/m³, respectively. This indicates that tire tread wear may be a major source of these benzothiazoles to urban air PM in Stockholm. Furthermore, 2-mercaptobenzothiazole was determined in urban air particulates for the first time in this study, and its presence in inhalable PM₁₀ implies that the human exposure to this biocide is underestimated. This calls for a revision of the risk assessments of 2-mercaptobenzothiazole exposure to humans which currently is limited to occupational exposure.
Afficher plus [+] Moins [-]Investigation of the antibacterial effects of silver-modified TiO₂ and ZnO plasmonic photocatalysts embedded in polymer thin films Texte intégral
2014
Tallósy, Szabolcs Péter | Janovák, László | Ménesi, Judit | Nagy, Elisabeth | Juhász, Ádám | Balázs, László | Deme, István | Buzás, Norbert | Dékány, Imre
Nanosilver-modified TiO₂ and ZnO photocatalysts were studied against methicillin-resistant Staphylococcus aureus on the surface and against naturally occurring airborne microorganisms. The photocatalysts/polymer nanohybrid films were prepared by spray coating technique on the surface of glass plates and on the inner surface of the reactive light source. The photoreactive surfaces were activated with visible light emitting LED light at λ = 405 nm. The optical properties of the prepared photocatalyst/polymer nanohybrid films were characterized by diffuse reflectance measurements. The photocatalytic properties were verified with the degradation of ethanol by gas chromatography measurements. The destruction of the bacterial cell wall component was examined with transmission electron microscope. The antibacterial effect of the photocatalyst/polymer nanohybrid films was tested with different methods and with the associated standard ISO 27447:2009. With the photoreactive coatings, an extensive disinfectant film was developed and successfully prepared. The cell wall component of S. aureus was degraded after 1 h of illumination. The antibacterial effect of the nanohybrid films has been proven by measuring the decrease of the number of methicillin-resistant S. aureus on the surface and in the air as the function of illumination time. The photocatalyst/polymer nanohybrid films could inactivate 99.9 % of the investigated bacteria on different thin films after 2 h of illumination with visible light source. The reactive light source with the inner-coated photocatalyst could kill 96 % of naturally occurring airborne microorganisms after 48 h of visible light illumination in indoor air sample. The TEM results and the microbiological measurements were completed with toxicity tests carried out with Vibrio fischeri bioluminescence bacterium.
Afficher plus [+] Moins [-]Competitive removal of pharmaceuticals from environmental waters by adsorption and photocatalytic degradation Texte intégral
2014
Rioja, N. | Benguria, P. | Peñas, F. J. | Zorita, S.
This work explores the competitive removal of pharmaceuticals from synthetic and environmental waters by combined adsorption-photolysis treatment. Five drugs usually present in waterways have been used as target compounds, some are pseudo-persistent pollutants (carbamazepine, clofibric acid, and sulfamethoxazole) and others are largely consumed (diclofenac and ibuprofen). The effect of the light source on adsorption of drugs onto activated carbons followed by photolysis with TiO₂ was assessed, being UV-C light the most effective for drug removal in both deionized water and river water. Different composites prepared from titania nanoparticles and powdered activated carbons were tested in several combined adsorption-photocatalysis assays. The composites prepared by calcination at 400 °C exhibited much better performance than those synthesized at 500 °C, being the C400 composite the most effective one. Furthermore, some synthetic waters containing dissolved species and environmental waters were used to investigate the effect of the aqueous matrix on each drug removal. In general, photocatalyst deactivation was found in synthetic and environmental waters. This was particularly evident in the experiments performed with bicarbonate ions as well as with wastewater effluent. In contrast, tests conducted in seawater showed adsorption and photocatalytic degradation yields comparable to those obtained in deionized water. Considering the peculiarities of substrate competition in each aqueous matrix, the combined adsorption-photolysis treatment generally increased the overall elimination of drugs in water.
Afficher plus [+] Moins [-]Impact assessment of human diet changes with rapid urbanization on regional nitrogen and phosphorus flows—a case study of the megacity Shanghai Texte intégral
2014
Liu, Chen | Zou, Chunjing | Wang, Qinxue | Hayashi, Yoshitsugu | Yasunari, Tetsuzo
Regional material flows are strongly influenced by human diets. To diagnose and prevent environmental problems that threaten urban sustainability, the impact of human diet changes with rapid urbanization on the regional nitrogen (N) and phosphorus (P) flows were quantitatively evaluated. A survey of day-to-day activities was conducted of 450 individuals surveyed (adults over 18 years old) in three representative areas (the central district, the new district, and the suburban/rural areas) of Shanghai, a megacity which has attracted worldwide attention. The lifestyle (eating habits, domestic sanitation, drainage facilities, etc.) pattern was determined and the potential N and P loads from human diets on the environment were calculated. The daily potential nitrogen and phosphorus loads from human diets was 19.36 g-N, 1.80 g-P in the central district, 16.48 g-N, 1.52 g-P in the new district, and 13.04 g-N, 1.20 g-P in the suburban/rural areas of Shanghai. Respondents in all three areas, especially those in the suburban/rural areas reported a preference for increasing the intake of animal-derived as well as processed foods, which means that the potential N and P load from human diets to the environment will increase further. In addition, most respondents consider industrial wastewater discharge as the main cause of eutrophication of waterbodies, though in recent years water pollution caused by domestic wastewater has increased rapidly, but this has received much less attention. Environment-friendly eating habits and improvements in the environmental awareness will be required.
Afficher plus [+] Moins [-]Occurrence, elimination, and risk of anticoagulant rodenticides and drugs during wastewater treatment Texte intégral
2014
Gómez-Canela, Cristian | Barata, Carlos | Lacorte, Silvia
Anticoagulants are biocides widely used as pest control agents in agriculture, urban infrastructures, and domestic applications for the control of rodents. Other anticoagulants such as warfarin and acenocoumarol are also used as drugs against thrombosis. After use, anticoagulants are discharged to sewage grids and enter wastewater treatment plants (WWTPs). Our hypothesis is that WWTP effluents can be a source of anticoagulants to receiving waters and that these can affect aquatic organisms and other nontarget species. Therefore, the objective of the present study was to determine the occurrence of 11 anticoagulants in WWTPs receiving urban and agricultural wastewaters. Warfarin was the most ubiquitous compound detected in influent waters and was partially eliminated during the activated sludge treatment, and low nanograms per liter concentration were found in the effluents. Other detected compounds were coumatetralyl, ferulenol, acenocoumarol, flocoumafen, brodifacoum, bromadiolone, and difenacoum at concentrations of 0.86–87.0 ng L⁻¹. Considering water volumes of each WWTP, daily emissions were estimated to be 0.02 to 21.8 g day⁻¹, and thus, WWTPs contribute to the loads of anticoagulants to receiving waters. However, low aquatic toxicity was observed using Daphnia magna as a model aquatic organism.
Afficher plus [+] Moins [-]Investigations on mobility of carbon colloid supported nanoscale zero-valent iron (nZVI) in a column experiment and a laboratory 2D-aquifer test system Texte intégral
2014
Busch, Jan | Meißner, Tobias | Potthoff, Annegret | Oswald, Sascha E.
Nanoscale zero-valent iron (nZVI) has recently gained great interest in the scientific community as in situ reagent for installation of permeable reactive barriers in aquifer systems, since nZVI is highly reactive with chlorinated compounds and may render them to harmless substances. However, nZVI has a high tendency to agglomerate and sediment; therefore it shows very limited transport ranges. One new approach to overcome the limited transport of nZVI in porous media is using a suited carrier colloid. In this study we tested mobility of a carbon colloid supported nZVI particle “Carbo-Iron Colloids” (CIC) with a mean size of 0.63 μm in a column experiment of 40 cm length and an experiment in a two-dimensional (2D) aquifer test system with dimensions of 110 × 40 × 5 cm. Results show a breakthrough maximum of 82 % of the input concentration in the column experiment and 58 % in the 2D-aquifer test system. Detected residuals in porous media suggest a strong particle deposition in the first centimeters and few depositions in the porous media in the further travel path. Overall, this suggests a high mobility in porous media which might be a significant enhancement compared to bare or polyanionic stabilized nZVI.
Afficher plus [+] Moins [-]Biochemical and standard toxic effects of acetaminophen on the macrophyte species Lemna minor and Lemna gibba Texte intégral
2014
Nunes, Bruno | Pinto, Glória | Martins, Liliana | Gonçalves, Fernando | Antunes, Sara C.
Biochemical and standard toxic effects of acetaminophen on the macrophyte species Lemna minor and Lemna gibba Texte intégral
2014
Nunes, Bruno | Pinto, Glória | Martins, Liliana | Gonçalves, Fernando | Antunes, Sara C.
Acetaminophen is globally one of the most prescribed drugs due to its antipyretic and analgesic properties. However, it is highly toxic when the dosage surpasses the detoxification capability of an exposed organism, with involvement of an already described oxidative stress pathway. To address the issue of the ecotoxicity of acetaminophen, we performed acute exposures of two aquatic plant species, Lemna gibba and Lemna minor, to this compound. The selected biomarkers were number of fronds, biomass, chlorophyll content, lipid peroxidation (TBARS assay), and proline content. Our results showed marked differences between the two species. Acetaminophen caused a significant decrease in the number of fronds (EC₅₀ = 446.6 mg/L), and the establishment of a dose-dependent peroxidative damage in L. minor, but not in L. gibba. No effects were reported in both species for the indicative parameters chlorophyll content and total biomass. However, the proline content in L. gibba was substantially reduced. The overall conclusions point to the occurrence of an oxidative stress scenario more prominent for L. minor. However, the mechanisms that allowed L. gibba to cope with acetaminophen exposure were distinct from those reported for L. minor, with the likely involvement of proline as antioxidant.
Afficher plus [+] Moins [-]Biochemical and standard toxic effects of acetaminophen on the macrophyte species Lemna minor and Lemna gibba Texte intégral
2014 | 1000
Nunes, Bruno | Pinto, Glória | Martins, Liliana | Gonçalves, Fernando | Antunes, Sara C.
Acetaminophen is globally one of the most prescribed drugs due to its antipyretic and analgesic properties. However, it is highly toxic when the dosage surpasses the detoxification capability of an exposed organism, with involvement of an already described oxidative stress pathway. To address the issue of the ecotoxicity of acetaminophen, we performed acute exposures of two aquatic plant species, Lemna gibba and Lemna minor, to this compound. The selected biomarkers were number of fronds, biomass, chlorophyll content, lipid peroxidation (TBARS assay), and proline content. Our results showed marked differences between the two species. Acetaminophen caused a significant decrease in the number of fronds (EC50 = 446.6 mg/L), and the establishment of a dose-dependent peroxidative damage in L. minor, but not in L. gibba. No effects were reported in both species for the indicative parameters chlorophyll content and total biomass. However, the proline content in L. gibba was substantially reduced. The overall conclusions point to the occurrence of an oxidative stress scenario more prominent for L. minor. However, the mechanisms that allowed L. gibba to cope with acetaminophen exposure were distinct from those reported for L. minor, with the likely involvement of proline as antioxidant.
Afficher plus [+] Moins [-]Geochemical behaviour of dissolved trace elements in a monsoon-dominated tropical river basin, Southwestern India Texte intégral
2014
The study presents a 3-year time series data on dissolved trace elements and rare earth elements (REEs) in a monsoon-dominated river basin, the Nethravati River in tropical Southwestern India. The river basin lies on the metamorphic transition boundary which separates the Peninsular Gneiss and Southern Granulitic province belonging to Archean and Tertiary–Quaternary period (Western Dharwar Craton). The basin lithology is mainly composed of granite gneiss, charnockite and metasediment. This study highlights the importance of time series data for better estimation of metal fluxes and to understand the geochemical behaviour of metals in a river basin. The dissolved trace elements show seasonality in the river water metal concentrations forming two distinct groups of metals. First group is composed of heavy metals and minor elements that show higher concentrations during dry season and lesser concentrations during the monsoon season. Second group is composed of metals belonging to lanthanides and actinides with higher concentration in the monsoon and lower concentrations during the dry season. Although the metal concentration of both the groups appears to be controlled by the discharge, there are important biogeochemical processes affecting their concentration. This includes redox reactions (for Fe, Mn, As, Mo, Ba and Ce) and pH-mediated adsorption/desorption reactions (for Ni, Co, Cr, Cu and REEs). The abundance of Fe and Mn oxyhydroxides as a result of redox processes could be driving the geochemical redistribution of metals in the river water. There is a Ce anomaly (Ce/Ce*) at different time periods, both negative and positive, in case of dissolved phase, whereas there is positive anomaly in the particulate and bed sediments. The Ce anomaly correlates with the variations in the dissolved oxygen indicating the redistribution of Ce between particulate and dissolved phase under acidic to neutral pH and lower concentrations of dissolved organic carbon. Unlike other tropical and major world rivers, the effect of organic complexation on metal variability is negligible in the Nethravati River water.
Afficher plus [+] Moins [-]Bioremediation treatment of hydrocarbon-contaminated Arctic soils: influencing parameters Texte intégral
2014
The Arctic environment is very vulnerable and sensitive to hydrocarbon pollutants. Soil bioremediation is attracting interest as a promising and cost-effective clean-up and soil decontamination technology in the Arctic regions. However, remoteness, lack of appropriate infrastructure, the harsh climatic conditions in the Arctic and some physical and chemical properties of Arctic soils may reduce the performance and limit the application of this technology. Therefore, understanding the weaknesses and bottlenecks in the treatment plans, identifying their associated hazards, and providing precautionary measures are essential to improve the overall efficiency and performance of a bioremediation strategy. The aim of this paper is to review the bioremediation techniques and strategies using microorganisms for treatment of hydrocarbon-contaminated Arctic soils. It takes account of Arctic operational conditions and discusses the factors influencing the performance of a bioremediation treatment plan. Preliminary hazard analysis is used as a technique to identify and assess the hazards that threaten the reliability and maintainability of a bioremediation treatment technology. Some key parameters with regard to the feasibility of the suggested preventive/corrective measures are described as well.
Afficher plus [+] Moins [-]