Affiner votre recherche
Résultats 1581-1590 de 6,535
What is in our seas? Assessing anthropogenic litter on the seafloor of the central Mediterranean Sea
2020
Garofalo, G. | Quattrocchi, F. | Bono, G. | Di Lorenzo, M. | Di Maio, F. | Falsone, F. | Gancitano, V. | Geraci, M.L. | Lauria, V. | Massi, D. | Scannella, D. | Titone, A. | Fiorentino, F.
Abundance, composition, and distribution of macro-litter found on the seafloor of the Strait of Sicily between 10 and 800 m depth has been studied using data collected by bottom trawl surveys MEDITS from 2015 to 2019. Three waste categories based on the items use were considered: single-use, fishing-related and generic-use. Over 600 sampling sites, just 14% of these were litter-free. The five-years average density of seafloor litter was 79.6 items/km² and ranged between 46.8 in 2019 and 118.1 items/km² in 2015. The predominant waste type was plastic (58% of all items). Regardless of material type, single-use items were a dominant (60% of items) and widespread (79% of hauls) fraction of litter with a mean density of 48.4 items/km². Fishing-related items accounted for 12% of total litter items. Percentage of dirty hauls and litter density increased with depth. Analysis of the relation density-depth indicates a progressive increase of litter density beyond depth values situated within the interval 234–477 m depending on the litter category. A significant decrease in litter density by categories was observed over the period. Patterns of spatial distribution at the higher depths (200–80 0m) resulted stable over the years. Density hotspots of fishing-related items were found where the fishing activity that uses fish aggregating devices (FADs) is practised and in the proximity of rocky banks. Single-use and generic-use objects densities were greater on the seafloor along main maritime routes than other areas. Comparisons between the percentage of hauls littered with anthropic waste from the mid-1990s against those in 2018–19 highlighted an increase of about 10.8% and 15.3% for single-use items and fishing-related items respectively, and a decrease of 18.6% for generic-use items. This study provides a snapshot of the current situation of littering in the central Mediterranean Sea and represents a solid baseline against which the effectiveness of current and future mitigation strategies of the litter impact on marine environment can be measured.
Afficher plus [+] Moins [-]Photoassisted degradation of 2,2′,4,4′-tetrabrominated diphenyl ether in simulated soil washing system containing Triton X series surfactants
2020
Huang, Kaibo | Liu, He | He, Jinglei | Li, Yan | Wang, Rui | Tang, Ting | Tao, Xueqin | Yin, Hua | Dang, Zhi | Lu, Guining
This study aims to use ultraviolet (UV) irradiation to decompose polybrominated diphenyl ethers (PBDEs) in the elutes and then reuse the surfactants. The results indicate that UV can remove 2,2′,4,4′-tetrabrominated diphenyl ether (BDE-47) from surfactant eluents and Triton X series surfactants also can remove BDE-47 from the soil. Triton X-100 (TX-100) is the most promising surfactant during the washing and photodegradation processes. Quench experiments suggest that both ¹O₂ and OH• were involved in the TX-100 decomposition but only ¹O₂ is responsible for the degradation of BDE-47. In analysis of the photoproducts of BDE-47 by Gas Chromatography Mass Spectrum (GC-MS) and Liquid Chromatography High Resolution Mass Spectrometry (LC-HRMS), BDE-47 was mainly debrominated to the lower-brominated BDEs and then oxidized to ring-opening products. The little loss of TX-100 can mainly be attributed to the breakage of polyethylene oxide (PEO) chain. Nevertheless, the washing wastes treated by UV light can exhibit higher solubility for BDE-47 than before, indicating they can be reused for BDE-47 removal from soil. The toxicity assessment experiments were performed using Escherichia coli (E.coli) as an indicator. The results indicate that the removal of BDE-47 by UV irradiation can reduce the toxicity of eluent.
Afficher plus [+] Moins [-]How long-term excessive manure application affects soil phosphorous species and risk of phosphorous loss in fluvo-aquic soil
2020
Qin, Xuechao | Guo, Shufang | Zhai, Limei | Pan, Junting | Khoshnevisan, Benyamin | Wu, Shuxia | Wang, Hongyuan | Yang, Bo | Ji, Jinghong | Liu, Hongbin
The excessive application of manure has caused a high load of phosphorus (P) in the North China Plain. Having an understanding of how manure application affects soil P changes and its transport between different soil layers is crucial to reasonably apply manure P and reduce the associated loss. Based on our 28-year field experiments, the compositions and changes of P species and the risk of P loss under excessive manure treatments were investigated, i.e., no fertilizer (CK), mineral fertilizer NPK (NPK), NPK plus 22.5 t ha⁻¹ yr⁻¹ swine manure (LMNPK), and NPK plus 33.75 t ha⁻¹ yr⁻¹ swine manure (HMNPK). Manure application increased the content of orthophosphate and myo-inositol hexaphosphate (myo-IHP), especially the orthophosphate content exceeded 95%. The amount of orthophosphate in manure and the conversion of organic P to inorganic P in soil were the main reasons for the increased soil orthophosphate. Compared with NPK treatment, soil microbial biomass phosphorus and alkaline phosphatase activity in LMNPK and HMNPK treatments significantly increased. Compared with NPK treatment, a high manure application rate under HMNPK treatment could increase the abundance of organic P-mineralization gene phoD by 60.0% and decrease the abundance of inorganic P-solubilization gene pqqC by 45.9%. Due to the continuous additional manure application, soil P stocks significantly increased under LMNPK and HMNPK treatments. Furthermore, part of the P has been leached to the 60–80 cm soil layer. Segmented regression analysis indicated that CaCl₂–P increased sharply when Olsen-P was higher than 25.1 mg kg⁻¹, however the content of Olsen-P did not exceed this value until 10 years after consecutive excessive manure application. In order to improve soil P availability and decrease the risk of P loss, the manure application rate should vary over time based on soil physicochemical conditions, plants requirements, and P stocks from previous years.
Afficher plus [+] Moins [-]Urban noise restricts, fragments, and lightens sleep in Australian magpies
2020
Connelly, Farley | Johnsson, Robin D. | Aulsebrook, Anne E. | Mulder, Raoul A. | Hall, Michelle L. | Vyssotski, Alexei L. | Lesku, John A.
Urban areas are inherently noisy, and this noise can disrupt biological processes as diverse as communication, migration, and reproduction. We investigated how exposure to urban noise affects sleep, a process critical to optimal biological functioning, in Australian magpies (Cracticus tibicen). Eight magpies experimentally exposed to noise in captivity for 24-h spent more time awake, and less time in non-rapid eye movement (non-REM) and REM sleep at night than under quiet conditions. Sleep was also fragmented, with more frequent interruptions by wakefulness, shorter sleep episode durations, and less intense non-REM sleep. REM sleep was particularly sensitive to urban noise. Following exposure to noise, magpies recovered lost sleep by engaging in more, and more intense, non-REM sleep. In contrast, REM sleep showed no rebound. This might indicate a long-term cost to REM sleep loss mediated by noise, or contest hypotheses regarding the functional value of this state. Overall, urban noise has extensive, disruptive impacts on sleep composition, architecture, and intensity in magpies. Future work should consider whether noise-induced sleep restriction and fragmentation have long-term consequences.
Afficher plus [+] Moins [-]Imaging VOC distribution in cities and tracing VOC emission sources with a novel mobile proton transfer reaction mass spectrometer
2020
Liang, Qu | Bao, Xun | Sun, Qin | Zhang, Qiangling | Zou, Xue | Huang, Chaoqun | Shen, Chengyin | Chu, Yannan
Volatile organic compounds (VOCs) are important precursors of ozone (O₃) and secondary organic aerosols (SOAs). Tracing VOC pollution sources is important for controlling VOC emissions and reducing O₃ and SOAs. We built a novel mobile proton transfer reaction mass spectrometry (M-PTR-MS) instrument to image the distribution of VOCs and trace their emission sources in cities and industrial parks. The M-PTR-MS is composed of a vibration-resistant proton transfer reaction mass spectrometry (PTR-MS) with a global positioning system receiver, modified box vehicle, and geographic information system (GIS) software. The PTR-MS, mounted on a vehicle, sends VOC data and vehicle position information to the GIS software. These data are used to image the space distribution of VOCs in real time while the vehicle platform is in motion and the VOC sources are precisely traced using the GIS. The spatial data resolution of the M-PTR-MS is typically 0.8 m. The limits of detection, sensitivity, and repeatability of the M-PTR-MS are 43.5 ppt, 347 counts ppb⁻¹, and 2.4% (RSD, n = 5), respectively. The intensity of reagent ions is stable over 8 h (RSD = 0.45%). Compared with commercial PTR-MS equipment, the M-PTR-MS demonstrated high consistency, with a correlation coefficient of 92.665%. Several field experiments were conducted in China using the M-PTR-MS. In one field experiment, the VOC distribution along three different routes was surveyed; the navigation monitoring lasted 1.8 h over a distance of 26.7 km at an average speed of 15 km h⁻¹. The VOC sources in an industrial park were identified by analyzing the components near different factories. The main species from a VOC source in an underground garage was related to paint. The M-PTR-MS instrument can be used by environmental protection agencies to trace VOC pollution sources in real time, and by researchers to survey VOC emissions in regions of concern.
Afficher plus [+] Moins [-]Heterogeneous activation of peroxymonosulfate by a biochar-supported Co3O4 composite for efficient degradation of chloramphenicols
2020
Xu, Hengduo | Zhang, Yuechao | Li, Jiajia | Hao, Qinqin | Li, Xin | Liu, Fanghua
Herein, a new peroxymonosulfate (PMS) activation system was established using a biochar (BC)-supported Co₃O₄ composite (Co₃O₄-BC) as a catalyst to enhance chloramphenicols degradation. The effects of the amount of Co₃O₄ load on the BC, Co₃O₄-BC amount, PMS dose and solution pH on the degradation of chloramphenicol (CAP) were investigated. The results showed that the BC support could well disperse Co₃O₄ particles. The degradation of CAP (30 mg/L) was enhanced in the Co₃O₄-BC/PMS system with the apparent degradation rate constant increased to 5.1, 19.4 and 7.2 times of that in the Co₃O₄/PMS, BC/PMS and PMS-alone control systems, respectively. Nearly complete removal of CAP was achieved in the Co₃O₄-BC/PMS system under the optimum conditions of 10 wt% Co₃O₄ loading on BC, 0.2 g/L Co₃O₄-BC, 10 mM PMS and pH 7 within 10 min. The Co₃O₄/BC composites had a synergistic effect on the catalytic activity possibly because the conducting BC promoted electron transfer between the Co species and HSO₅⁻ and thus accelerated the Co³⁺/Co²⁺redox cycle. Additionally, over 85.0 ± 1.5% of CAP was still removed in the 10th run. Although both SO₄⁻ and OH were identified as the main active species, SO₄⁻ played a dominant role in CAP degradation. In addition, two other chloramphenicols, i.e., florfenicol (FF) and thiamphenicol (TAP), were also effectively degraded with percentages of 86.4 ± 1.3% and 71.8 ± 1.0%, respectively. This study provides a promising catalyst Co₃O₄-BC to activate PMS for efficient and persistent antibiotics degradation.
Afficher plus [+] Moins [-]Exposure of U.S. population to endocrine disruptive chemicals (Parabens, Benzophenone-3, Bisphenol-A and Triclosan) and their associations with female infertility
2020
Arya, Sushila | Dwivedi, Alok Kumar | Alvarado, Luis | Kupesic-Plavsic, Sanja
Ubiquitous exposure to endocrine disruptive chemicals (EDC) among women of reproductive age is alarming. Exposure to EDCs could be contributing to infertility. We determined the association between common EDCs and self-reported infertility among U.S. women, 18–45 years of age using the National Health and Nutrition Examination Surveys (NHANES) for periods 2013–2014 and 2015–2016. A cross-sectional study on reproductive age women was conducted. Available important sociodemographic variables, and urinary concentrations of parabens (methyl paraben [MP], ethyl paraben [EP], propyl paraben [PP], and butyl paraben [BP]), Benzophenone-3 (BP-3), Bisphenol-A (BPA), and triclosan (TCS) were obtained from the NHANES databases. Clustering among EDCs were obtained using variable cluster analysis. Relative risk regression models were used to estimate associations of individual and combined EDCs with self-reported infertility after applying appropriate survey weights to account for the complex survey design as well as to compensate for the four-year cycle. Results were summarized using prevalence ratio (PR) with 95% confidence interval (CI). Of total 789 individuals included in the study, 14% (95%CI: 11%–18%) had infertility. MP and PP were detected in 99% of urine samples, BP in 46%, EP and BP-3 in 96%, BPA in 94% and TCS in 73%. Self-reported infertility was significantly associated with combined score of BP-3, BPA and TCS (PR = 1.13, p = 0.007), and above detection level of EP (PR = 1.57, p = 0.025) even after adjusting for potential confounders. Our results suggested the EP and mixtures of benzophenones, TCS, and BPA were associated with infertility among the U.S. women. However, because of the limitations inherent to the cross-sectional study design, prospective cohort studies are warranted to confirm these findings.
Afficher plus [+] Moins [-]Determination of bisphenol A and bisphenol S by a covalent organic framework electrochemical sensor
2020
Pang, Yue-Hong | Huang, Yu-Ying | Wang, Li | Shen, Xiao-Fang | Wang, Yi Ying
Bisphenol A (BPA) is a widely produced chemical that is mainly used as raw material for manufacturing plastic products. It is an endocrine disruptor and causes irreversible damage to the human body. Bisphenol S (BPS), an alternative to BPA, has low dose effects on toxicology and genotoxicity. Herein, we constructed a highly porous crystalline covalent organic framework (COF, CTpPa-2)-modified glassy carbon electrode (GCE) for the electrochemical sensing of BPA and BPS. The electrochemical properties of the CTpPa-2/GCE were characterized using galvanostatic charge-discharge, cyclic voltammetry and differential pulse voltammetry. The CTpPa-2/GCE exhibited remarkable electrocatalytic activity, and the electrochemical responses for BPA and BPS were found to be linear in the concentration ranges of 0.1–50 μM and 0.5–50 μM with detection limits of 0.02 μM and 0.09 μM (S/N = 3), respectively. Moreover, the fabricated sensor was utilized to determine BPA and BPS in bottle samples with recoveries of 87.0%–92.2% and migration rates of 13.2%–28.0%.
Afficher plus [+] Moins [-]Ibuprofen and diclofenac impair the cardiovascular development of zebrafish (Danio rerio) at low concentrations
2020
Zhang, Kun | Yuan, Guanxiang | Werdich, Andreas A. | Zhao, Yanbin
The non-steroidal anti-inflammatory drugs (NSAIDs) ibuprofen and diclofenac are highly prescribed worldwide and their presence in aquatic system may pose a potential risk to aquatic organisms. Here, we systematically assessed their cardiovascular disruptive effects in zebrafish (Danio rerio) at environmentally relevant concentrations between 0.04 and 25.0 μg/L. Ibuprofen significantly increased the cardiac outputs of zebrafish embryos at actual concentrations of 0.91, 4.3 and 21.9 μg/L. It up-regulated the blood cell velocity, total blood flow and down-regulated the blood cell density at concentrations of 4.3 μg/L and higher. In comparison, diclofenac led to inhibition of spontaneous muscle contractions and decreased hatching rate of zebrafish embryos at the highest concentration (24.1 μg/L), while it had negligible effects on the cardiac physiology and hemodynamics. Transcriptional analysis of biomarker genes involved in cardiovascular physiology, such as the significantly up-regulated nppa and nkx2.5 expressions response to ibuprofen but not to diclofenac, is consistent with these observations. In addition, both ibuprofen and diclofenac altered the morphology of intersegmental vessels at high concentrations. Our results revealed unexpected cardiovascular functional alterations of NSAIDs to fish at environmental or slightly higher than surface water concentrations and thus provided novel insights into the understanding of their potential environmental risks.
Afficher plus [+] Moins [-]Exposure to etoxazole induces mitochondria-mediated apoptosis in porcine trophectoderm and uterine luminal epithelial cells
2020
Park, Wonhyoung | Lim, Whasun | Park, Sunwoo | Whang, Kwang-Youn | Song, Gwonhwa
Etoxazole is an organofluorine insecticide widely used in agriculture. Exposure to insecticides is a serious environmental problem owing to their cytotoxic effects in humans and animals. Reproductive toxicity of various organofluorine insecticides have been shown in previous studies. However, few studies have evaluated the toxicity of etoxazole in mammals. We aimed to examine the toxic effects of etoxazole in porcine trophectoderm (pTr) and uterine luminal epithelial (pLE) cells. To estimate the effects of etoxazole, we conducted assays after treatment with multiple concentration of etoxazole (0, 2, 4, 6 and 9 μM) to pTr and pLE cells for 0–72 h. Etoxazole decreased the cell proliferation, viability, and migration of pTr and pLE cells. Further, etoxazole induced apoptosis via cell cycle arrest and disruption of mitochondrial membrane potential. We also found that pro-apoptotic proteins and endoplasmic reticulum (ER) stress-response proteins were activated in response to etoxazole. Finally, we observed that etoxazole altered the PI3K/AKT and MAPK signaling pathways and the mRNA expression of genes associated with implantation. Collectively, these results suggest that etoxazole disrupts normal cellular physiology and might cause early implantation failure.
Afficher plus [+] Moins [-]