Affiner votre recherche
Résultats 1581-1590 de 7,290
Bio-effects of bio-based and fossil-based microplastics: Case study with lettuce-soil system Texte intégral
2022
Zhang, Ying | Zhang, Chunxiang | Jiang, Min | Zhou, Guangyuan
Bio-based plastics have been developed as alternative materials to solve the energy crisis brought by plastic production, but their impacts on soil ecosystems (e.g. plant and microorganisms) remain largely unknown. Here, we conducted study on the impacts of polyethylene 2,5-furan-dicarboxylate (PEF), a new bio-based plastic, on the plant-soil ecosystem, with comparison of fossil-based plastic polyethylene terephthalate (PET). Our investigation showed that, after 21 days exposure to microplastics (MPs) at doses of 0.5%, 1% and 2%, both PEF and PET MPs inhibited the growth of lettuce, where chlorophyll was found to be the most sensitive index. According to the comprehensive stress resistance indicators, PET MPs showed more severe phytotoxicity than PEF MPs. Although both PEF and PET MPs could inhibit soil enzyme activities, PET MPs exhibited significantly reduction on the diversity of rhizosphere soil bacterial community and changed the relative abundance of dominant species. Our study gave insights into the effects of PEF and PET MPs on the plant-soil system, where bio-based PEF MPs showed more friendly interaction with plant and soil than fossil-based PET MPs. Our results provided scientific data for risk assessment and useful information for the prospective application of bio-based plastics.
Afficher plus [+] Moins [-]Bisphenol-diglycidyl ethers in paired urine and serum samples from children and adolescents: Partitioning, clearance and exposure assessment Texte intégral
2022
Yang, Runhui | Duan, Jiali | Li, Hong | Sun, Ying | Shao, Bing | Niu, Yumin
Bisphenol A diglycidyl ether (BADGE), bisphenol F diglycidyl ether (BFDGE), and their derivatives are frequently used in food packaging materials. Some toxicological studies have shown that the endocrine-disrupting activities of these compounds are similar to or higher than those of bisphenol A (BPA), which may also adversely affect the growth and development of children and adolescents. Here, we investigated nine bisphenol-diglycidyl ethers (BDGEs) in 181 paired urine and serum samples from children and adolescents from Beijing to determine their partitioning, clearance and exposure levels. The results showed that nine BDGEs were detected in 181 urine and serum samples from children and adolescents from Beijing. Bisphenol A bis(2,3-dihydroxypropyl) glycidyl ether (BADGE·2H₂O) was the primary pollutant. The daily intake of ∑BDGEs was 15.217 ng/kg bw/day among children and adolescents in Beijing. The ranking of BDGEs in terms of renal clearance rate (CLᵣₑₙₐₗ) in this study population was BADGE > BADGE·2H₂O > BFDGE > bisphenol F bis(3-chloro-2-hydroxypropyl) glycidyl ether (BFDGE·2HCl) > bisphenol A (3-chloro-2-hydroxypropyl) (2,3-dihydroxypropyl) glycidyl ether (BADGE·HCl·H₂O). In addition, the serum and urine ratios (S/U ratios) of BFDGE·2HCl, BADGE·2H₂O, BFDGE, BADGE, and BADGE·HCl·H₂O were higher than 1, indicating that these contaminants have a higher enrichment capacity in human blood. To our knowledge, this is the first study on the partitioning and renal clearance rate of BDGEs in paired urine and serum samples from children and adolescents.
Afficher plus [+] Moins [-]Foliar-applied cerium oxide nanomaterials improve maize yield under salinity stress: Reactive oxygen species homeostasis and rhizobacteria regulation Texte intégral
2022
Liu, Yinglin | Cao, Xuesong | Yue, Le | Wang, Chuanxi | Tao, Mengna | Wang, Zhenyu | Xing, Baoshan
Salinity stress seriously threatens agricultural productivity and food security worldwide. This work reports on the mechanisms of alleviating salinity stress by cerium oxide nanomaterials (CeO2 NMs) in maize (Zea may L.). Soil-grown maize plants were irrigated with deionized water or 100 mM NaCl solution as the control or the salinity stress treatment. CeO2 NMs (1, 5, 10, 20, and 50 mg/L) with antioxidative enzyme mimicking activities were foliarly applied on maize leaves for 7 days. The morphological, physiological, biochemical, and transcriptomic responses of maize were evaluated. Specifically, salinity stress significantly reduced 59.0% and 63.8% in maize fresh and dry biomass, respectively. CeO₂ NMs at 10, 20, and 50 mg/L improved the salt tolerance of maize by 69.5%, 69.1%, and 86.8%, respectively. Also, 10 mg/L CeO₂ NMs maintained Na⁺/K⁺ homeostasis, enhanced photosynthetic efficiency by 30.8%, and decreased reactive oxygen species (ROS) level by 58.5% in salt-stressed maize leaves. Transcriptomic analysis revealed that the antioxidative defense system-related genes recovered to the normal control level after CeO₂ NMs application, indicating that CeO₂ NMs eliminated ROS through their intrinsic antioxidative enzyme properties. The down-regulation of genes related to lignin synthesis in the phenylpropanoid biosynthesis pathway accelerated leaf cell elongation. In addition, CeO₂ NMs increased the rhizobacteria richness and diversity through the increment of carbon source in root exudates and improved the abundance of halotolerant plant growth-promoting rhizobacteria (HT-PGPR). Importantly, the yield of salt-stressed maize was enhanced by 293.3% after 10 mg/L CeO₂ NMs foliar application. These results will provide new insights for the application of CeO₂ NMs in management to reduce the salinity-caused crop loss.
Afficher plus [+] Moins [-]Stabilization of heavy metals in biochar derived from plants in antimony mining area and its environmental implications Texte intégral
2022
Wang, Qian | Wang, Bing | Ma, Yuena | Zhang, Xueyang | Lyu, Wenqiang | Chen, Miao
Heavy metals pollution in mining soils seriously threatens the ecological environment and human health worldwide. Phytoremediation is considered to be an ideal method to reduce the toxicity, mobility, and bioavailability of heavy metals in the soils. However, the disposal of plant-enriched heavy metals has become a thorny problem. To estimate the effect of pyrolysis on the stabilization of heavy metals in post-phytoremediation plant residues, different biochars were prepared from Conyza canadensis (CC), Gahnia tristis (GT), and Betula luminifera (BL) at different pyrolysis temperatures (300, 450, and 600 °C). Results indicated that pyrolysis was effective in the stabilization of heavy metals (Cr, Ni, As, Sb, Hg, and Pb) in plants and significantly (P < 0.05) decreased the bioavailability of most heavy metals. Among them, GT₆₀₀ prepared by pyrolysis of GT at 600 °C has the best stabilization effect on Sb, which increases the residual fraction by 7.32 times, up to 82.05%. The results of environmental risk assessment show that pyrolysis of biomass at high temperature (600 °C) can effectively mitigate the environmental impact of As, Sb, and Hg. Additionally, the reutilization potential of biochar produced by post-phytoremediation plant residues as adsorbents was investigated. The results of adsorption experiments revealed that all biochars have an excellent performance to adsorb Pb(II), and the maximum adsorption capacity is 139.16 mg g⁻¹ for CC₄₅₀. The adsorption mechanism could be attributed to complexation, electrostatic attraction, and cation exchange. This study demonstrates that pyrolysis is an effective and environment-friendly alternative method to stabilize heavy metals in plants, and their pyrolysis products can be reused for heavy metal adsorption.
Afficher plus [+] Moins [-]Concentration and leachability of N-(1,3-dimethylbutyl)-N′-phenyl-p-phenylenediamine (6PPD) and its quinone transformation product (6PPD-Q) in road dust collected in Tokyo, Japan Texte intégral
2022
Hiki, Kyoshiro | Yamamoto, Hiroshi
A recently identified chemical, 2-((4-Methylpentan-2-yl)amino)-5-(phenylamino)cyclohexa-2,5-diene-1,4-dione (6PPD-quinone; 6PPD-Q), is a transformation product of an additive used in the manufacture of tire rubber and causes acute lethality in coho salmon (Oncorhynchus kisutch) in urban watersheds. Despite its potential presence and ecotoxicity in receiving waters worldwide, information on the occurrence and fate of 6PPD-Q is limited. Here, we investigated the concentrations of 6PPD-Q and its parent chemical, 6PPD, in road dust collected from arterial and residential roads in Tokyo, Japan from May to October 2021. 6PPD-Q concentrations were highest from May to June, when atmospheric ozone concentrations are the highest in Japan; a correlation between 6PPD-Q and photochemical oxidants, as an alternative to ozone, corroborated this finding. We also found that 6PPD-Q concentrations at photochemical oxidant concentrations ranging from 35 to 47 ppbv were higher in dust collected from roads with high traffic volumes (i.e., arterial roads; median: 8.6 μg/g-OC) than in dust collected from roads with lower traffic volumes (i.e., residential roads; median: 6.3 μg/g-OC), indicating that 6PPD-Q is generated from traffic-related sources. We also found that 6PPD-Q was leached from dust particles within a few hours, with a log partitioning coefficient between organic carbon and water (KOC) of 3.2–3.5. The present results will help to understand the environmental occurrence, fate, and behavior of 6PPD-Q.
Afficher plus [+] Moins [-]Floating marine macro litter in the Black Sea: Toward baselines for large scale assessment Texte intégral
2022
González-Fernández, D. | Hanke, G. | Pogojeva, M. | Machitadze, N. | Kotelnikova, Y. | Tretiak, I. | Savenko, O. | Bilashvili, K. | Gelashvili, N. | Fedorov, A. | Kulagin, D. | Terentiev, A. | Slobodnik, J.
Floating marine macro litter in the Black Sea: Toward baselines for large scale assessment Texte intégral
2022
González-Fernández, D. | Hanke, G. | Pogojeva, M. | Machitadze, N. | Kotelnikova, Y. | Tretiak, I. | Savenko, O. | Bilashvili, K. | Gelashvili, N. | Fedorov, A. | Kulagin, D. | Terentiev, A. | Slobodnik, J.
The Black Sea is a semi-enclosed basin subject to major anthropogenic pressures, including marine litter and plastic pollution. Due to numerous large rivers draining into the basin and a population settled along the coast, the region could accumulate significant amounts of floating litter over time. Until now, only limited field data were available, and litter quantities and distribution remained unknown. In this study, floating marine macro litter (FMML) was assessed at the regional Black Sea scale for the first time, showing relatively high litter densities across the basin that reached a weighted mean of 81.5 items/km². Monitoring data revealed an accumulation of floating items offshore in the eastern part of the basin, resembling on a small scale a ‘garbage patch’, where litter items were trapped, showing elevated densities in comparison to their surrounding areas. Most of these items were made of plastic materials (ca. 96%) and included large numbers of plastic and polystyrene fragments of small size ranges (2.5–10 cm). Harmonised field data collection through consistent and regular monitoring programmes across the region is essential to establish baselines and thresholds for large scale assessment at international level.
Afficher plus [+] Moins [-]Floating marine macro litter in the Black Sea: Toward baselines for large scale assessment Texte intégral
2022
González Fernández, Daniel | Hanke, G. | Pogojeva, M. | Machitadze, N. | Kotelnikova, Y. | Tretiak, I. | Savenko, O. | Bilashvili, K. | Gelashvili, N. | Fedorov, A. | Kulagin, D. | Terentiev, A. | Slobodnik, J. | Biología
The Black Sea is a semi-enclosed basin subject to major anthropogenic pressures, including marine litter and plastic pollution. Due to numerous large rivers draining into the basin and a population settled along the coast, the region could accumulate significant amounts of floating litter over time. Until now, only limited field data were available, and litter quantities and distribution remained unknown. In this study, floating marine macro litter (FMML) was assessed at the regional Black Sea scale for the first time, showing relatively high litter densities across the basin that reached a weighted mean of 81.5 items/km(2). Monitoring data revealed an accumulation of floating items offshore in the eastern part of the basin, resembling on a small scale a "garbage patch', where litter items were trapped, showing elevated densities in comparison to their surrounding areas. Most of these items were made of plastic materials (ca. 96%) and included large numbers of plastic and poly-styrene fragments of small size ranges (2.5-10 cm). Harmonised field data collection through consistent and regular monitoring programmes across the region is essential to establish baselines and thresholds for large scale assessment at international level.
Afficher plus [+] Moins [-]Plasma perfluoroalkyl substance exposure and incidence risk of breast cancer: A case-cohort study in the Dongfeng-Tongji cohort Texte intégral
2022
Feng, Yue | Bai, Yansen | Lu, Yanjun | Chen, Mengshi | Fu, Ming | Guan, Xin | Cao, Qiang | Yuan, Fangfang | Jie, Jiali | Li, Mengying | Meng, Hua | Wang, Chenming | Hong, Shiru | Zhou, Yuhan | Zhang, Xiaomin | He, Meian | Kwok, Woon
Experimental studies have suggested perfluoroalkyl substances (PFASs) as mammary toxicants, but few studies evaluated the prospective associations of PFASs with breast cancer risk. We performed a case-cohort study within the Dongfeng-Tongji cohort, including incident breast cancer cases (n = 226) and a random sub-cohort (n = 990). Baseline plasma concentrations of four perfluorinated carboxylic acids (PFCAs) [perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA), perfluorodecanoic acid (PFDA), and perfluoroheptanoic acid (PFHpA)] and two perfluorinated sulfonic acids (PFSAs) [perfluorooctane sulfonic acid (PFOS) and perfluorohexane sulfonic acid (PFHxS)] were measured. Barlow-weighted Cox regression models revealed that each 1-unit increase in ln-transformed PFOA and PFHpA was associated with a separate 35% and 20% elevated incident risk of breast cancer [HR(95%CI) = 1.35(1.03, 1.78) and 1.20(1.02, 1.40), respectively], which were also significant among postmenopausal females [HR(95%CI) = 1.34(1.01, 1.77) and 1.23 (1.02, 1.48), respectively]. Quantile g-computation analysis observed a 19% increased incident risk of breast cancer along with each simultaneous quartile increase in all ln-transformed PFCA concentrations [HR(95%CI) = 1.19(1.01, 1.41)], with PFOA accounting for 56% of the positive effect. Our findings firstly revealed the impact of short-chain PFHpA on increased incident risk of breast cancer, suggested exposure to PFASs as a risk factor for breast cancer, and shed light on breast cancer prevention by regulating PFASs as a chemical class.
Afficher plus [+] Moins [-]Physical activity reduces the role of blood cadmium on depression: A cross-sectional analysis with NHANES data Texte intégral
2022
Tian, Xiaoyu | Xue, Baode | Wang, Bo | Lei, Ruoyi | Shan, Xiaobing | Niu, Jingping | Luo, Bin
Cadmium (Cd) exposure is recognized as an important risk factor for psychological health, but suitable physical activity may relieve depression. However, it remains unknown whether physical activity (PA) can reduce the effect of cadmium exposure on depression. Therefore, a cross-sectional data from National Health and Nutrition Examination Survey (NHANES) 2015–2018 was used. The Nine-item Patient Health Questionnaire (PHQ-9) was used to assess depression among the participants. PA was calculated according to the metabolic equivalent (MET), weekly frequency, and duration of each activity. Logistic regression and restricted cubic spline models were used to examine the associations of Cd and depression. A total of 5560 adults aged 20 years and above were finally included in this study. The results indicated a positive correlation between blood Cd and depression. The multivariate-adjusted ORs (95% CI) of the highest quartile were 2.290 (1.754–2.990) for depression, which was still significant after controlling other heavy metals (P < 0.05). Under Cd exposure, the high intensity of physical activity group had the lowest risk of depression (OR = 2.226, 95%CI: 1.447–3.425), while the group with no physical activity had the highest risk (OR = 2.443, 95%CI: 1.382–4.318). Our results indicate that inner Cd exposure may be a risk factor for depression, and physical activity can moderate this relationship to some degree.
Afficher plus [+] Moins [-]Combined exposure of lead and high-fat diet enhanced cognitive decline via interacting with CREB-BDNF signaling in male rats Texte intégral
2022
Liu, Rundong | Bai, Lin | Liu, Mengchen | Wang, Ruike | Wu, Yingying | Li, Qiong | Ba, Yue | Zhang, Huizhen | Zhou, Guoyu | Yu, Fangfang | Huang, Hui
The health risks to populations induced by lead (Pb) and high-fat diets (HFD) have become a global public health problem. Pb and HFD often co-exist and are co-occurring risk factors for cognitive impairment. This study investigates effect of combined Pb and HFD on cognitive function, and explores the underlying mechanisms in terms of regulatory components of synaptic plasticity and insulin signaling pathway. We showed that the co-exposure of Pb and HFD further increased blood Pb levels, caused body weight loss and dyslipidemia. The results from Morris water maze (MWM) test and Nissl staining disclosed that Pb and HFD each contributed to cognitive deficits and neuronal damage and combined exposure enhanced this toxic injury. Pb and HFD decreased the levels of synapsin-1, GAP-43 and PSD-95 protein related to synaptic properties and SIRT1, NMDARs, phosphorylated CREB and BDNF related to synaptic plasticity regulatory, and these decreases was greater when combined exposure. Additionally, we revealed that Pb and HFD promoted IRS-1 phosphorylation and subsequently reduced downstream PI3K-Akt kinases phosphorylation in hippocampus and cortex of rats, and this process was aggravated when co-exposure. Collectively, our data suggested that combined exposure of Pb and HFD enhanced cognitive deficits, pointing to additive effects in rats than the individual stress effects related to multiple signaling pathways with CREB-BDNF signaling as the hub. This study emphasizes the need to evaluate the effects of mixed exposures on brain function in realistic environment and to better inform prevention of neurological disorders via modulating central pathway, such as CREB/BDNF signaling.
Afficher plus [+] Moins [-]Increased transfer of trace metals and Vibrio sp. from biodegradable microplastics to catfish Clarias gariepinus Texte intégral
2022
Jang, Faddrine Holt | Wong, Changi | Choo, Jenny | Aun Sia, Edwin Sien | Mujahid, Aazani | Müller, Moritz
Microplastic ingestion has been documented in various aquatic species. This causes physical damage, and additionally contaminated microplastics transfer attached pollutants and microbial pathogens to ingesting organisms. Continued metal accumulation can lead to toxicity and adverse health effects; attached microbial pathogens can cause dysbiosis - which lowers host immunity and promotes infections. Catfish, Clarias gariepinus, are a major food source in Southeast Asia, a hotspot of plastic pollution. This study aimed to quantify the transfer of the trace metals copper (Cu) and lead (Pb) -at environmentally relevant concentrations-from microplastics (polyamide 12, PA12, and polylactic acid, PLA) to catfish. Fish were reared for three months and exposed to seven different combinations of feed, supplemented with plastics and metals. At monthly intervals, fish gills, intestines, liver, and edible muscles were analysed for Cu and Pb concentrations using ICP-OES, and the intestines content assessed for Vibrio sp.. Our results showed that biodegradable PLA transferred higher amounts of metals to catfish than expected and also led to increased Vibrio counts in the intestines compared to PA12. Trace metal accumulation was significantly different in varying tissues, with highest concentrations observed in the gills, followed by liver, intestines, and lastly edible muscles. The results of this study further support the existing evidence that microplastics act as efficient shuttles to concentrate and transfer metals. They also indicate that their uptake can cause dysbiosis (increased numbers of Vibrio sp.). Most importantly, however, our study highlights that biodegradable polymers, such as PLA, could actually pose a greater environmental threat when ingested compared to the more common polymers such as PA12.
Afficher plus [+] Moins [-]