Affiner votre recherche
Résultats 1591-1600 de 7,288
Biomass-related PM2.5 induces mitochondrial fragmentation and dysfunction in human airway epithelial cells Texte intégral
2022
Gao, Mi | Liang, Chunxiao | Hong, Wei | Yu, Xiaoyuan | Zhou, Yumin | Sun, Ruiting | Li, Haiqing | Huang, Haichao | Gan, Xuhong | Yuan, Ze | Zhang, Jiahuan | Chen, Juan | Mo, Qiudi | Wang, Luyao | Lin, Biting | Li, Bing | Ran, Pixin
The use of biomass for cooking and heating is considered an important factor associated with chronic obstructive pulmonary disease (COPD), but few studies have previously addressed its underlying mechanisms. Therefore, this research aimed to evaluate the effects of biomass-related PM₂.₅ (BRPM₂.₅) exposure on 16HBE human airway epithelial cells and in mice with regard to mitochondrial dysfunction. Our study indicated that BRPM₂.₅ exposure of 16HBE cells resulted in mitochondrial dysfunction, including decreased mitochondrial membrane potential, increased expression of fission proteins-phospho-DRP1, increased mitochondrial ROS (mtROS), and decreased levels of ATP. BRPM₂.₅ altered the mitochondrial metabolism of 16HBE cells by decreasing mitochondrial oxygen consumption and glycolysis. However, Mitochondria targeted peptide SS-31 eliminated mitochondrial ROS and alleviated the ATP deficiency and proinflammatory cytokines release. BRPM2.5 exposure resulted in abnormal mitochondrial morphological alterations both in 16HBE and in lung tissue. Taken together, these results suggest that BRPM₂.₅ has detrimental effects on human airway epithelial cells, leading to mitochondrial dysfunction, abnormal mitochondrial metabolism and altered mitochondrial dynamics. The present study provides the first evidence that disruption of mitochondrial structure and mitochondrial metabolism may be one of the mechanisms of BRPM₂.₅-induced respiratory dysfunction.
Afficher plus [+] Moins [-]Presence of pesticides in the environment, transition into organic food, and implications for quality assurance along the European organic food chain – A review Texte intégral
2022
Schleiffer, Mirjam | Speiser, Bernhard
Presence of pesticides in the environment, transition into organic food, and implications for quality assurance along the European organic food chain – A review Texte intégral
2022
Schleiffer, Mirjam | Speiser, Bernhard
The use of synthetic pesticides is not allowed in organic production, but traces of synthetic pesticides are regularly detected in organic food. To safeguard the integrity of organic production, organic certifiers are obliged to investigate the causes for pesticide residues on organic food, entailing high costs to the organic sector. Such residues can have various origins, including both fraud and unintentional contamination from the environment. Because the knowledge about contamination from environmental sources is scattered, this review provides an overview of pathways for unintentional and technically unavoidable contamination of organic food with synthetic pesticides in Europe. It shows that synthetic pesticides are widely present in all environmental compartments. They originate from applications in the region, in distant areas or from historical use. Transition into the food chain has been demonstrated by various studies. However, large uncertainties remain regarding the true pesticide contamination of the environment, their dynamics and the contamination risks for the food chain. Organic operators can take certain measures to reduce the risks of pesticide contamination of their products, but a certain extent of pesticide contamination is technically unavoidable. The present paper indicates that (i) a potential risk for pesticide residues exists on all organic crops and thus organic operators cannot meet a ‘zero-tolerance’ approach regarding pesticide residues at the moment. (ii) Applying a residue concentration threshold to distinguish between cases of fraud and unavoidable contamination for all pesticides is not adequate given the variability of contamination. More reliable answers can be obtained with a case-by-case investigation, where evidence for all possible origins of pesticide residues is collected and the likelihood of unavoidable contamination and fraud are estimated. Ultimately, for organic certification bodies and control authorities it will remain a challenge to determine whether a pesticide residue is due to neglect of production rules or technically unavoidable.
Afficher plus [+] Moins [-]Presence of pesticides in the environment, transition into organic food, and implications for quality assurance along the European organic food chain – A review Texte intégral
2022
Schleiffer, Mirjam | Speiser, Bernhard
The use of synthetic pesticides is not allowed in organic production, but traces of synthetic pesticides are regularly detected in organic food. To safeguard the integrity of organic production, organic certifiers are obliged to investigate the causes for pesticide residues on organic food, entailing high costs to the organic sector. Such residues can have various origins, including both fraud and unintentional contamination from the environment. Because the knowledge about contamination from environmental sources is scattered, this review provides an overview of pathways for unintentional and technically unavoidable contamination of organic food with synthetic pesticides in Europe. It shows that synthetic pesticides are widely present in all environmental compartments. They originate from applications in the region, in distant areas or from historical use. Transition into the food chain has been demonstrated by various studies. However, large uncertainties remain regarding the true pesticide contamination of the environment, their dynamics and the contamination risks for the food chain. Organic operators can take certain measures to reduce the risks of pesticide contamination of their products, but a certain extent of pesticide contamination is technically unavoidable. The present paper indicates that (i) a potential risk for pesticide residues exists on all organic crops and thus organic operators cannot meet a ‘zero-tolerance’ approach regarding pesticide residues at the moment. (ii) Applying a residue concentration threshold to distinguish between cases of fraud and unavoidable contamination for all pesticides is not adequate given the variability of contamination. More reliable answers can be obtained with a case-by-case investigation, where evidence for all possible origins of pesticide residues is collected and the likelihood of unavoidable contamination and fraud are estimated. Ultimately, for organic certification bodies and control authorities it will remain a challenge to determine whether a pesticide residue is due to neglect of production rules or technically unavoidable.
Afficher plus [+] Moins [-]Bioremediation of micropollutants using living and non-living algae - Current perspectives and challenges Texte intégral
2022
Ratnasari, Anisa | Syafiuddin, Achmad | Zaidi, Nur Syamimi | Hong Kueh, Ahmad Beng | Hadibarata, Tony | Prastyo, Dedy Dwi | Ravikumar, Rajagounder | Sathishkumar, Palanivel
The emergence and continual accumulation of industrial micropollutants such as dyes, heavy metals, organic matters, and pharmaceutical active compounds (PhACs) in the ecosystem pose an alarming hazard to human health and the general wellbeing of global flora and fauna. To offer eco-friendly solutions, living and non-living algae have lately been identified and broadly practiced as promising agents in the bioremediation of micropollutants. The approach is promoted by recent findings seeing better removal performance, higher efficiency, surface area, and binding affinity of algae in various remediation events compared to bacteria and fungi. To give a proper and significant insight into this technology, this paper comprehensively reviews its current applications, removal mechanisms, comparative efficacies, as well as future outlooks and recommendations. In conducting the review, the secondary data of micropollutants removal have been gathered from numerous sources, from which their removal performances are analyzed and presented in terms of strengths, weaknesses, opportunities, and threats (SWOT), to specifically examine their suitability for selected micropollutants remediation. Based on kinetic, isotherm, thermodynamic, and SWOT analysis, non-living algae are generally more suitable for dyes and heavy metals removal, meanwhile living algae are appropriate for removal of organic matters and PhACs. Moreover, parametric effects on micropollutants removal are evaluated, highlighting that pH is critical for biodegradation activity. For selective pollutants, living and non-living algae show recommendable prospects as agents for the efficient cleaning of industrial wastewaters while awaiting further supporting discoveries in encouraging technology assurance and extensive applications.
Afficher plus [+] Moins [-]Catchment-scale microbial sulfate reduction (MSR) of acid mine drainage (AMD) revealed by sulfur isotopes Texte intégral
2022
Fischer, Sandra | Jarsjö, Jerker | Rosqvist, Gunhild | Mörth, Carl-Magnus
Laboratory experiments and point observations, for instance in wetlands, have shown evidence that microbial sulfate reduction (MSR) can lower sulfate and toxic metal concentrations in acid mine drainage (AMD). We here hypothesize that MSR can impact the fate of AMD in entire catchments. To test this, we developed a sulfur isotope fractionation and mass-balance method, and applied it at multiple locations in the catchment of an abandoned copper mine (Nautanen, northern Sweden). Results showed that MSR caused considerable, catchment-scale immobilization of sulfur corresponding to a retention of 27 ± 15% under unfrozen conditions in the summer season, with local values ranging between 13 ± 10% and 53 ± 18%. Present evidence of extensive MSR in Nautanen, together with previous evidence of local MSR occurring under many different conditions, suggest that field-scale MSR is most likely important also at other AMD sites, where retention of AMD may be enhanced through nature-based solutions. More generally, the developed isotope fractionation analysis scheme provides a relatively simple tool for quantification of spatio-temporal trends in MSR, answering to the emerging need of pollution control from cumulative anthropogenic pressures in the landscape, where strategies taking advantage of MSR can provide viable options.
Afficher plus [+] Moins [-]Robust strategies to eliminate endocrine disruptive estrogens in water resources Texte intégral
2022
Vēlāyutan̲, T. A. | Rizwan, Komal | Adeel, Muhammad | Barceló, Damià | Awad, Youssef Ahmed | Iqbal, Hafiz M.N.
Robust strategies to eliminate endocrine disruptive estrogens in water resources Texte intégral
2022
Vēlāyutan̲, T. A. | Rizwan, Komal | Adeel, Muhammad | Barceló, Damià | Awad, Youssef Ahmed | Iqbal, Hafiz M.N.
The widespread occurrence and ubiquitous distribution of estrogens, i.e., estrone (E1), estradiol (E2), and estriol (E3) in our water matrices, is an issue of global concern. Public and regulatory authorities are concerned and placing joint efforts to eliminate estrogens and related environmentally hazardous compounds, due to their toxic influences on the environmental matrices, ecology, and human health, even at low concentrations. However, most of the available literature is focused on the occurrence of estrogens in different water environments with limited treatment options. Thus, a detailed review to fully cover the several treatment processes is needed. This review comprehensively and comparatively discusses many physical, chemical, and biological-based treatments to eliminate natural estrogens, i.e., estrone (E1), estradiol (E2), and estriol (E3) and related synthetic estrogens, e.g., 17α-ethinylestradiol (EE2) and other related hazardous compounds. The covered techniques include adsorption, nanofiltration, ultrafiltration, ultrasonication, photocatalysis of estrogenic compounds, Fenton, Fenton-like and photo-Fenton degradation of estrogenic compounds, electro-Fenton degradation of estrogenic compounds, ozonation, and biological methods for the removal of estrogenic compounds are thoroughly discussed with suitable examples. The studies revealed that treatment plants based on chemical and biological approaches are cost-friendly for removing estrogenic pollutants. Further, there is a need to properly monitor and disposal of the usage of estrogenic drugs in humans and animals. Additional studies are required to explore a robust and more advanced oxidation treatment strategy that can contribute effectively to industrial-scale applications. This review may assist future investigations, monitoring, and removing estrogenic compounds from various environmental matrices. In concluding remarks, a way forward and future perspectives focusing on bridging knowledge gaps in estrogenic compounds removal are also proposed.
Afficher plus [+] Moins [-]Robust strategies to eliminate endocrine disruptive estrogens in water resources Texte intégral
2022
Bilal, Muhammad | Rizwan, Komal | Adeel, Muhammad | Barceló, Damià | Awad, Youssef Ahmed | Iqbal, Hafiz M.N. | 0000-0001-5388-3183 | 0000-0002-8873-0491 | 0000-0003-4855-2720 | Consejo Superior de Investigaciones Científicas [https://ror.org/02gfc7t72]
The widespread occurrence and ubiquitous distribution of estrogens, i.e., estrone (E1), estradiol (E2), and estriol (E3) in our water matrices, is an issue of global concern. Public and regulatory authorities are concerned and placing joint efforts to eliminate estrogens and related environmentally hazardous compounds, due to their toxic influences on the environmental matrices, ecology, and human health, even at low concentrations. However, most of the available literature is focused on the occurrence of estrogens in different water environments with limited treatment options. Thus, a detailed review to fully cover the several treatment processes is needed. This review comprehensively and comparatively discusses many physical, chemical, and biological-based treatments to eliminate natural estrogens, i.e., estrone (E1), estradiol (E2), and estriol (E3) and related synthetic estrogens, e.g., 17α-ethinylestradiol (EE2) and other related hazardous compounds. The covered techniques include adsorption, nanofiltration, ultrafiltration, ultrasonication, photocatalysis of estrogenic compounds, Fenton, Fenton-like and photo-Fenton degradation of estrogenic compounds, electro-Fenton degradation of estrogenic compounds, ozonation, and biological methods for the removal of estrogenic compounds are thoroughly discussed with suitable examples. The studies revealed that treatment plants based on chemical and biological approaches are cost-friendly for removing estrogenic pollutants. Further, there is a need to properly monitor and disposal of the usage of estrogenic drugs in humans and animals. Additional studies are required to explore a robust and more advanced oxidation treatment strategy that can contribute effectively to industrial-scale applications. This review may assist future investigations, monitoring, and removing estrogenic compounds from various environmental matrices. In concluding remarks, a way forward and future perspectives focusing on bridging knowledge gaps in estrogenic compounds removal are also proposed. | Consejo Nacional de Ciencia y Tecnología (CONACyT) Mexico is thankfully acknowledged for partially supporting this work under Sistema Nacional de Investigadores (SNI) program awarded to Hafiz M. N. Iqbal (CVU: 735340). | Peer reviewed
Afficher plus [+] Moins [-]Impact of different manure-derived dissolved organic matters on the fate of arsenic-antibiotic in co-contaminated paddy soils Texte intégral
2022
Yan, Mengmeng | Zhu, Changxiong | Song, Tingting | Li, Binxu | Su, Shiming | Li, Hongna
Manure application increases the transfer risk of antibiotic resistance to farmland. Especially, its impact remains unclear when it occurs in arsenic (As)-contaminated paddy soils, which is considered as a global environmental problem. In this work, we investigated the fate of antibiotic resistance genes (ARGs) in As-antibiotic co-contaminated paddy soils under the application of manure from different sources (pig manure, cow dung, and chicken manure). Differences in the aliphatic carbon and electron-donating capacities of these dissolved organic matters (DOM) regulated the transformation of iron and As by both biotic and abiotic processes. The regulation by pig manure was stronger than that by cow dung and chicken manure. DOM regulation increased the abundance of As-related functional genes (arsC, arrA, aioA, and arsM) in the soil and accelerated the transformation of As speciation, the highest proportion of As(III) being 45%–61%. Meanwhile, the continuous selection pressure provided by the highly toxic As(III) increased the risk of ARGs and mobile genetic elements (MGEs) via horizontal gene transfer. As-resistant bacteria, including Bacillus, Geobacter, and Desulfitobacterium, were finally considered as potential host bacteria for ARGs and MGEs. In summary, this study clarified the synergistic mechanism of As-antibiotic on the fate of ARGs in co-contaminated paddy soils, and provided practical guidance for the proper application of organic fertilizers.
Afficher plus [+] Moins [-]Plastisphere development in relation to the surrounding biotic communities Texte intégral
2022
Žuna Pfeiffer, Tanja | Špoljarić Maronić, Dubravka | Stević, Filip | Galir Balkić, Anita | Bek, Nikolina | Martinović, Ana | Mandir, Tomislav | Nikolašević, Rahela | Janjić, Doris
To study the early colonization processes, polyethylene terephthalate (PET) microfragments were immersed in Lake Sakadaš and the Drava River and sampled weekly together with the surrounding biotic communities - phytoplankton, zooplankton, epixylon in the lake and epilithon in the river. At the end of the study, a rise in water level occurred in the river, which altered the environmental conditions and plankton communities. In studied environments, all of the sampled biotic communities were diverse and abundant. Plastispheres formed in both waters by the seventh day of incubation and developed rapidly, reaching a peak in abundance on the last day of the study. Initial colonization was supported equally by planktonic and periphytic taxa in both environments, but after initial settlement, plastisphere assemblages were affected differently in the river and lake. This study suggests that PET microfragments are a suitable substrate for microphyte settlement and may provide an important pathway for their transport in dynamic freshwater floodplains and river systems.
Afficher plus [+] Moins [-]Antimony and arsenic particle size distribution in a mining contaminated freshwater river: Implications for sediment quality assessment and quantifying dispersion Texte intégral
2022
Doherty, Steven | Rueegsegger, Isabelle | Tighe, Matthew K. | Milan, Luke A. | Wilson, Susan C.
Assessments of antimony (Sb) and arsenic (As) contamination in sediments are reported on a wide range of different particle size fractions, including <63 μm, < 180 μm and <2 mm. Guidelines vary between jurisdictions which limits comparative assessment between contamination events and complicates ecotoxicity assessment, and almost no information exists on Sb size distribution in contaminated sediments. This study quantified and compared the size distribution of Sb and As in 11 sediments (and 2 floodplain soils) collected along 320 km of waterway contaminated by historic mining activity. Sediment particle size distribution was the primary determinant of total metalloid load in size fractions across the varying substrates of the waterway. Minerals and sorption complexes influenced metalloid particle distribution but relative importance depended on location. Arsenic concentrations were greatest in the fine <63 μm fraction across all the different river environments (7.3–189 mg kg⁻¹, or 1–26% of total sample As), attributed to fine-grained primary arsenopyrite and/or sorption of As(V) to fine solid-phases. The Sb particle size concentrations were greatest in mid-size fractions (205–903 mg kg⁻¹) in the upper catchment and up to 100 km downstream to the mid-catchment as a result of remnant Sb minerals. Antimony concentrations in the lower catchment were greatest in the <63 μm fraction (8.8–12.1 mg kg⁻¹), reflecting the increasing importance of sorption for Sb particle associations. This work demonstrates the importance of particle size analysed for assessment of sediment quality, and provides support for analysis of at least the <250 μm fraction for Sb and As when comparing pollutant distribution in events impacted by primary contamination. Analysis of the <63 μm fraction, however, provides good representation in well-dispersed contaminated sediments.
Afficher plus [+] Moins [-]Fast arsenate As(V) adsorption and removal from water using aluminium Al(III) fixed on Kapok fibres Texte intégral
2022
Yeo, Kanfolo Franck Herve | Dong, Yingying | Yang, Ye | Li, Chaokun | Wu, Kun | Zhang, Hui | Chen, Zhiwen | Atse, Eilohm Babotsa | Yang, Lan | Wang, Wendong
Arsenic (As) is among the most dangerous metalloids and is harmful to human wellbeing. In this laboratory study, Al(III)-modified kapok fibres (Al-Kapok) were used to remove As(V) from water. The sorbent was characterised using Fourier transform infrared spectroscopy (FT-IR) and scanning electron microscopy (SEM) combined with energy-dispersive X-ray spectroscopy (EDX). Batch experiments were performed to observe the performance of Al-Kapok in the removal of As(V) and to examine the effects of pH, temperature, adsorbent dose, and coexisting ions on the adsorption process. The surface of the sorbent changed after aluminium modification, and the results of the batch experiments showed that the adsorption of As(V) occurred mainly via endothermic-spontaneous chemisorption at the solution and solid interface of Al-Kapok. The As(V) removal efficiency was approximately 76%–84%, and it was slightly affected at pH levels below 8.0. Further study showed that the maximum adsorption capacity of Al-Kapok for As(V) was 118 μg/g at 30 °C and pH 6, and notable adverse effects were caused by the presence of SO42−and PO43−. It was also found that the boundary layer and film diffusion contributed more to As(V) adsorption. After five adsorption/desorption cycles, regeneration recovered approximately 92% of the adsorption capacity of Al-Kapok used. Overall, Al-Kapok appears to be a suitable adsorbent material for the purification of As-contaminated water.
Afficher plus [+] Moins [-]Current status of microbes involved in the degradation of pharmaceutical and personal care products (PPCPs) pollutants in the aquatic ecosystem Texte intégral
2022
Narayanan, Mathiyazhagan | El-Sheekh, Mostafa | Ma, Ying | Pugazhendhi, Arivalagan | Natarajan, Devarajan | Kandasamy, Gajendiran | Raja, Rathinam | Saravana Kumar, R.M. | Kumarasamy, Suresh | Sathiyan, Govindasamy | Geetha, R. | Paulraj, Balaji | Liu, Guanglong | Kandasamy, Sabariswaran
Contamination of aquatic systems with pharmaceuticals, personal care products, steroid hormones, and agrochemicals has been an immense problem for the earth's ecosystem and health impacts. The environmental issues of well-known persistence pollutants, their metabolites, and other micro-pollutants in diverse aquatic systems around the world were collated and exposed in this review assessment. Waste Water Treatment Plant (WWTP) influents and effluents, as well as industrial, hospital, and residential effluents, include detectable concentrations of known and undiscovered persistence pollutants and metabolites. These components have been found in surface water, groundwater, drinking water, and natural water reservoirs receiving treated and untreated effluents. Several studies have found that these persistence pollutants, and also similar recalcitrant pollutants, are hazardous to a variety of non-targeted creatures in the environment. In human and animals, they can also have severe and persistent harmful consequences. Because these pollutants are harmful to aquatic organisms, microbial degradation of these persistence pollutants had the least efficiency. Fortunately, only a few wild and Genetically Modified (GMOs) microbial species have the ability to degrade these PPCPs contaminants. Hence, researchers have been studying the degradation competence of microbial communities in persistence pollutants of Pharmaceutical and Personal Care Products (PPCPs) and respective metabolites for decades, as well as possible degradation processes in various aquatic systems. As a result, this review provides comprehensive information about environmental issues and the degradation of PPCPs and their metabolites, as well as other micro-pollutants, in aquatic systems.
Afficher plus [+] Moins [-]