Affiner votre recherche
Résultats 1611-1620 de 6,536
Insights into chemical composition, abatement mechanisms and regional transport of atmospheric pollutants in the Yangtze River Delta region, China during the COVID-19 outbreak control period
2020
Jia, Haohao | Huo, Juntao | Fu, Qingyan | Duan, Yusen | Lin, Yanfen | Jin, Xiaodan | Hu, Xue | Cheng Jinping,
To investigate chemical characteristics, abatement mechanisms and regional transport of atmospheric pollutants during the COVID-19 outbreak control period in the Yangtze River Delta (YRD) region, China, the measurements of air pollutants including fine particulate matter (PM₂.₅) and volatile organic compounds (VOCs) on non-control period (NCP, 24 December 2019–23 January 2020) and control period (CP, 24 January–23 February 2020) were analyzed at the urban Pudong Supersite (PD) and the regional Dianshan Lake Supersite (DSL). Due to the stricter outbreak control, the levels of PM₂.₅ and VOCs, and the occurrence frequencies of haze-fog episodes decreased substantially from NCP to CP, with average reduction rates of 31.6%, 38.9% and 35.1% at PD, and 34.5%, 50.7% and 37.9% at DSL, respectively. The major source for PM₂.₅ was secondary sulfate & nitrate in both periods, and the emission control of primary sources such as coal burning and vehicle exhaust decreased the levels of precursors gas sulfur dioxide and nitrogen oxide, which highly contributed to the abatement of PM₂.₅ from NCP to CP. The higher levels of ozone at both PD and DSL on CP might be due to the weak nitrogen monoxide titration, low relative humidity and high visibility compared with NCP. Vehicle exhaust and fugitive emission from petrochemical industry were the major contributors of ambient VOCs and their decreasing activities mainly accounted for VOCs abatement. Moreover, the high frequency of haze-fog events was closely impacted by medium-scale regional transport within Anhui and Jiangsu provinces. Therefore, the decreasing regional transported air pollutants coincided with the emission control of local sources to cause the abatement of haze-fog events in YRD region on CP. This study could improve the understanding of the change of atmospheric pollutants during the outbreak control period, and provide scientific base for haze-fog pollution control in YRD region, China.
Afficher plus [+] Moins [-]Study of the generation and diffusion of bioaerosol under two aeration conditions
2020
Han, Yunping | Yang, Dang | Han, Chao | Li, Lin | Liu, Junxin
Given that studies on actual sewage treatment plants are often affected by environmental conditions, it is challenging to clearly understand the associated bioaerosol generation and diffusion characteristics during the aeration process. Therefore, to enhance understanding in this regard, in this study, bioaerosol generator was used to simulate bioaerosol generation and diffusion under two aeration modes, i.e., bubble bottom aeration and brush surface aeration. The total concentration range of culturable bacteria in the bioaerosol produced by bubble bottom aeration and that produced by brush surface aeration were 300–3000 CFU/m³. Under bubble bottom aeration, the generated bioaerosol was symmetrically distributed around the source point, whereas under brush surface aeration, it was primarily distributed in the forward direction of the rotating brush surface. These bioaerosols from bubble bottom aeration predominantly consisted of particles with sizes below 3.3 μm, particularly those with sizes in the range 1.1–2.1 μm. On the contrary, the bioaerosols produced via brush surface aeration predominantly consisted of particles with sizes above 3.3 μm. The distribution characteristics of population structure in the two aeration modes were consistent with the distribution characteristics of concentration in the corresponding models. Additionally, the results showed that when the aeration process is unaffected by environmental conditions (particle matters, wind direct, wind speed, etc.), the bioaerosol components originate primarily from the parent sewage or sludge, and do not diffuse far from the source point. Therefore, source reduction (capping or sealing) can be recommended as the primary control strategy for bioaerosols in sewage treatment plants. The adoption of such measures will significantly limit the diffusion of bioaerosols, thereby reducing the potential risks associated with human exposure.
Afficher plus [+] Moins [-]Polystyrene microplastics decrease accumulation of essential fatty acids in common freshwater algae
2020
Guschina, Irina A. | Hayes, Anthony J. | Ormerod, Stephen J.
Despite growing concern about the occurrence of microplastics in aquatic ecosystems there is only rudimentary understanding of the pathways through which any adverse effects might occur. Here, we assess the effects of polystyrene microplastics (PS-MPs; <70 μm) on a common and widespread algal species, Chlorella sorokiniana. We used laboratory exposure to test the hypothesis that the lipids and fatty acids (FAs) are important molecules in the response reactions of algae to this pollutant. Cultivation with PS-MPs systematically reduced the concentration of essential linoleic acid (ALA, C18:3n-3) in C. sorokiniana, concomitantly increasing oleic acid (C18:1n-9). Among the storage triacylglycerols, palmitoleic and oleic acids increased at the expenses of two essential fatty acids, linoleic (LIN, C18:2n-6) and ALA, while PS-MPs had even more pronounced effects on the fatty acid and hydrocarbon composition of waxes and steryl esters. The FA composition of two major chloroplast galactolipids, monogalactosyldiacylglycerol (MGDG) and digalactosyldiacylglycerol (DGDG), were affected implying changes in the conformational structure of photosynthetic complexes in ways that can impair the photosynthesis. These data reveal how exposure to polystyrene microplastics can modify the concentrations of lipid molecules that are important intrinsically in cell membranes, and hence the lipid bilayers that could form an important barrier between algal cellular compartments and plastics in the aquatic environment. Changes in lipid synthesis and fatty acid composition in algae could also have repercussions for food quality, growth and stressor resistance in primary consumers. We advocate further studies of microplastics effects on the lipid composition of primary producers, and of their potential propagation through aquatic food webs.
Afficher plus [+] Moins [-]Seasonal dynamics of the bacterial communities associated with cyanobacterial blooms in the Han River
2020
Kim, Minkyung | Lee, Jaebok | Yang, Dongwoo | Park, Hye Yoon | Park, Woojun
DNA-based analyses of bacterial communities were performed to identify the bacteria co-occurring with cyanobacterial blooms in samples collected at a single site over 2 years. Microcystis aeruginosa was the most predominant species (81% in 2018, and 94% in 2019) within the phylum Cyanobacteria, and microcystins were detected during all cyanobacterial blooms. The stereo microscope and scanning electron microscope observations showed bacterial associations on and around the aggregated M. aeruginosa cells. Culture-independent analyses of filtered bacterial communities showed that the Flavobacterium species in phylum Bacteroidetes (19%) was dominant in the cyanobacterial phycosphere, followed by the Limnohabitans species in Betaproteobacteria (11%). Using principal component analysis, major bacterial genus, including Microcystis and Flavobacterium species, were clustered during cyanobacterial blooms in both years. To identify key bacterial species that develop long-term symbiosis with M. aeruginosa, another culture-independent analysis was performed after the environmental sample had been serially subcultured for 1 year. Interestingly, Brevundimonas (14%) was the most dominant species, followed by Porphyrobacter (7%) and Rhodobacter (3.5%) within the Alphaproteobacteria. Screening of 100 colonies from cyanobacterial bloom samples revealed that the majority of culturable bacteria belonged to Gammaproteobacteria (28%) and Betaproteobacteria (57%), including Pseudomonas, Curvibacter, and Paucibacter species. Several isolates of Brevundimonas, Curvibacter, and Pseudomonas species could promote the growth of axenic M. aeruginosa PCC7806. The sensitivity of M. aeruginosa PCC7806 cells to different environmental conditions was monitored in bacteria-free pristine freshwater, indicating that nitrogen addition promotes the growth of M. aeruginosa.
Afficher plus [+] Moins [-]Accumulation of halogenated polycyclic aromatic hydrocarbons by different tuna species, determined by high-resolution gas chromatography Orbitrap mass spectrometry
2020
Wickrama-Arachchige, A Upasanta-Kumara | Hirabayashi, Takuma | Imai, Yuki | Guruge, Keerthi S. | Dharmaratne, Tilak S. | Ohura, Takeshi
Halogenated polycyclic aromatic hydrocarbon (HPAH) concentrations in tissues from three tuna species Thunnus albacares (yellowfin tuna), Katsuwonus pelamis (skipjack tuna), and Auxis thazard (frigate tuna) were determined by high-resolution gas chromatography Orbitrap mass spectrometry. The tuna samples were collected from the Indian Ocean. The instrument conditions gave high mass accuracy at 0.9 m/z isolation width of the mass filter and a mass error of <±1.0 ppm for many HPAHs. A total of 29 of the 30 targets chlorinated PAHs (ClPAHs) and 20 of the 21 targets brominated PAHs (BrPAHs) were detected in the tuna muscle samples. The mean total ClPAH, BrPAH and PAH concentrations for tuna were 127.2, 156.6 and 682.8 ng/g lipid weight, respectively. The mean total ClPAH and BrPAH concentrations (ng/g lipid weight) in the tuna were considerably lower than that of PAH concentrations. The mean total ClPAH, BrPAH and PAH concentrations in T. albacares respectively were 185.8, 249.2 and 784.1 ng/g lipid weight, irrespective of the body sizes. The mean total ClPAH, BrPAH and PAH concentrations in K. pelamis respectively were 45.1, 24.8 and 555.6 ng/g lipid weight. The mean total ClPAH, BrPAH and PAH concentrations in A. thazard respectively were 34.09, 4.73 and 433.24 ng/g lipid weight. The total ClPAH concentrations and body weights significantly positively correlated for T. albacares. The mean total ClPAH concentration in white muscles was significantly higher (p < 0.05) for large than for small T. albacares. This suggests ClPAHs could bioaccumulate in T. albacares, possibly because they are poorly metabolized. The chlorinated phenanthrene and pyrene concentrations indicated tuna accumulate these compounds increasingly effectively as the tuna grow. This was the first time large numbers of HPAHs were found in biological samples. HPAHs may adversely affect the health of humans consuming tuna.
Afficher plus [+] Moins [-]Evaluation of red mud based binder for the immobilization of copper, lead and zinc
2020
Wang, Fei | Pan, Hao | Xu, Jian
In this study, by products such as red mud, phosphorus gypsum and fly ash were used as binders, and are compared with Portland cement (PC) in immobilizing Cu, Pb and Zn. Cu, Pb and Zn -doped pastes and mortars were prepared with a metal to binder ratio at 1%. Samples were cured for 7d, 14d and 28d. The unconfined compressive strength (UCS) test, a batch leaching test along with scanning electron microscopy (SEM) and thermogravimetric analysis (TGA) were applied for the testing of Cu, Pb and Zn-doped pastes and mortars. The UCS results show that red mud-phosphorus gypsum treated samples produce higher strength than these treated by red mud-fly ash, or PC. The results of leaching test revealed that the immobilization degree of heavy metals from these pastes depends on the leachate pH of these pastes. With the aid of the cement, red mud-phosphorus gypsum-cement pastes leached less metals compared to that of red mud-phosphorus gypsum pastes. The leachate concentrations of Cu, Pb and Zn from red mud-phosphorus gypsum-cement pastes are 1.5 mg/L, 1 mg/L, and 3 mg/L respectively. They are able to meet the China Ministry of Environment Protection (MEP) regulatory limit. With the increase of the curing time, the unconfined compressive strength and the leaching concentrations of these pastes showed a slightly increasing trend. In addition, SEM and TGA analyses show that the major hydration product is ettringite.
Afficher plus [+] Moins [-]Spatiotemporal variations and driving factors of dust storm events in northern China based on high-temporal-resolution analysis of meteorological data (1960–2007)
2020
Xu, Chuanqi | Guan, Qingyu | Lin, Jinkuo | Luo, Haiping | Yang, Liqin | Tan, Zhe | Wang, Qingzheng | Wang, Ning | Tian, Jing
Northern China is a significant source of dust source in Central Asia. Thus, high-resolution analysis of dust storms and comparison of dust sources in different regions of northern China are important to clarify the formation mechanism of East Asian dust storms and predict or even prevent such storms. Here, we analyzed spatiotemporal trends in dust storms that occurred in three main dust source regions during 1960–2007: Taklimakan Desert (western region [WR]), Badain Jaran and Tengger Deserts (middle region [MR]), and Otindag Sandy Land (eastern region [ER]). We analyzed daily dust storm frequency (DSF) at the 10-day scale (first [FTDM], middle [MTDM], and last [LTDM] 10 days of a month), and investigated the association of dust storm occurrences with meteorological factors. The 10-day DSF was greatest in the FTDM (accounting for 77.14% of monthly occurrences) in the WR, MTDM (45.85%) in the MR, and LTDM (72.12%) in the ER, showing a clear trend of movement from the WR to the ER. Temporal analysis of DSF revealed trend changes over time at annual and 10-day scales, with mutation points at 1985 and 2000. We applied single-factor and multiple-factor analyses to explore the driving mechanisms of DSF at the 10-day scale. Among single factors, a low wind-speed threshold, high solar radiation, and high evaporation were correlated with a high DSF, effectively explaining the variations in DSF at the 10-day scale; however, temperature, relative humidity, and precipitation poorly explained variations in DSF. Similarly, multiple-factor analysis using a classification and regression tree revealed that maximum wind speed was a major influencing factor of dust storm occurrence at the 10-day scale, followed by relative humidity, evaporation, and solar radiation; temperature and precipitation had weak influences. These findings help clarify the mechanisms of dust storm occurrence in East Asia.
Afficher plus [+] Moins [-]Inoculation with abscisic acid (ABA)-catabolizing bacteria can improve phytoextraction of heavy metal in contaminated soil
2020
Lu, Qi | Weng, Yineng | You, Yue | Xu, Qianru | Li, Haiyue | Li, Yuan | Liu, Huijun | Du, Shaoting
Promotion of plant capacity for accumulation of heavy metals (HMs) is one of the key strategies in enhancing phytoremediation in contaminated soils. Here we report that, Rhodococcus qingshengii, an abscisic acid (ABA)-catabolizing bacteria, clearly boosts levels of Cd, Zn, and Ni in wild-type Arabidopsis by 47, 24, and 30%, respectively, but no increase in Cu was noted, when compared with non-inoculated Arabidopsis plants in contaminated growth substrate. Furthermore, when compared with wild-type plants, R.qingshengii-induced increases in Cd, Zn, and Ni concentrations were more pronounced in abi1/hab1/abi2 (ABA-sensitive mutant) strains of Arabidopsis, whereas little effect was observed in snrk2.2/2.3 (ABA insensitive mutant). This demonstrates that metabolizing ABA might be indispensable for R. qingshengii to improve metal accumulation in plants. Bacterial inoculation significantly elevated the expression of Cd, Zn, and Ni-related transporters; whereas the transcript levels of Cu transporters remained unchanged. This result may be a reasonable explanation for why the uptake of Cd, Zn, and Ni in plants was stimulated by bacterial inoculation, while no effect was observed on Cu levels. From our results, we clearly demonstrate that R. qingshengii can increase the accumulation of Cd, Zn, and Ni in plants via an ABA-mediated HM transporters-associated mechanism. Metabolizing ABA in the plants by ABA-catabolizing bacterial inoculation might be an alternative strategy to improve phytoremediation efficiency in HMs contaminated soil.
Afficher plus [+] Moins [-]Increasing phosphate inhibits cadmium uptake in plants and promotes synthesis of amino acids in grains of rice
2020
Zhao, Yanling | Zhang, Changbo | Wang, Changrong | Huang, Yongchun | Liu, Zhongqi
Technologies for cleaner production of rice in cadmium (Cd) contaminated field are being explored worldwide. In order to investigate the inhibition mechanism of phosphate on Cd transport in soil-plant system, controlled experiments were performed in this study. Experimental results showed that Cd levels in roots, flag leaves, rachises and grains of rice plants (Oryza sativa L.) were significantly reduced by supplement of 0.5–2.5 g kg⁻¹ calcium magnesium phosphate fertilizer (CMP). Path coefficient analysis revealed that phosphorous had significant negative direct effect on Cd, but positive indirect effect on essential and non-essential amino acids. Applying 2.5 g kg⁻¹ CMP made the Cd concentration decreased by 45.7% while free essential and non-essential amino acids increased by 28.0–28.6% in grains. Levels of the branched-chain amino acids in grains were much higher than other essential amino acids, and increased with the amount of CMP fertilization. After application of CMP, pH of soil solution and thickness of the iron plaque around roots increased significantly. Spectra from X-ray photoelectron spectrometer (XPS) showed that content of N, P and Fe increased apparently, C, O and Ca had no change, while S decreased by 74.2% in roots after application of 2.5 g kg⁻¹ CMP. Meanwhile, Cd concentration in protoplasts of root cells decreased by 39.5–80.1% with the increase of CMP. These results indicate that application of CMP can effectively inhibit Cd accumulation in root protoplasts by promoting iron plaque formation on the root surface, reduce Cd concentration and increase free amino acids in rice grains.
Afficher plus [+] Moins [-]Behavior of last resort antibiotic resistance genes (mcr-1 and blaNDM-1) in a drinking water supply system and their possible acquisition by the mouse gut flora
2020
Khan, Hira | Miao, Xiaocao | Liu, Mingkun | Ahmad, Shakeel | Bai, Xiaohui
Mcr-1 and blaNDM₋₁ antibiotic resistance genes (ARGs) confer resistance to colistins and carbapenems, which are often antibiotics used as a last resort in tertiary care hospitals. Dissemination of these two ARGs in drinking water supply systems and their effect on healthy gut bacteria are poorly studied. In this study, the dissemination of mcr-1 and blaNDM₋₁ in a drinking water supply system, and their effect on the antibiotic resistance of mouse gut bacteria are explored.Metagenome analysis revealed that source water (Taipu river and Jinze reservoir) was polluted with ARGs. Mcr-1 and blaNDM₋₁ can be disseminated through the water distribution system. Even advanced water treatments (ozone and biological activated carbon (BAC)) could not effectively remove mcr-1 and blaNDM₋₁. Low concentrations of chloramine disinfectants in the water distribution system were not effective at limiting ARG abundance. Mobile genetic elements were also found to play a major role in the dissemination of ARGs via horizontal gene transfer (HGT) throughout the water supply system. Statistical analysis revealed that there was no effect of temperature on the abundance of mcr-1 and blaNDM₋₁ throughout the water supply system.A last resort ARG, mcr-1 can disseminate from drinking water to the healthy mouse gut. The presence of mcr-1 in a strain belonging to Enterococcus hirae, which is different from the strain belonging to the Bacillus cereus group isolated from drinking water, strongly supports the phenomena of HGT inside the gut.This research provides novel insights into the role of drinking water in disseminating ARGs to the gut and strongly suggests that drinking water may also play a major role apart from other factors known to be involved in the prevalence of last resort ARGs in the gut.
Afficher plus [+] Moins [-]