Affiner votre recherche
Résultats 1661-1670 de 6,536
Photo-induced phosphate release during sediment resuspension in shallow lakes: A potential positive feedback mechanism of eutrophication
2020
Guo, Minli | Li, Xiaolu | Song, Chunlei | Liu, Guanglong | Zhou, Yiyong
Dissolved phosphate (Pᵢ) can be released during resuspended sediments exposed to sunlight. However, the significance of this phenomenon in the process of eutrophication is not clear. In this study, the behavior of photo-induced Pᵢ release during sediment resuspension in shallow lakes with the different trophic states was investigated. The amount of photo-induced Pᵢ release in the sediment resuspension from Lake Liangzi, Lake Dong, Lake Tangxun and Lake Longyang in China was 0.013, 0.019, 0.032, and 0.048 mg/L, respectively, and increased as the trophic states of the lakes increased. The results of phosphorus speciation analysis showed that the phosphate monoester in the particulate phosphorus is the organic phosphorus species participated in the photochemical reaction. The steady-state concentration of hydroxyl radical (OH) in the sediment resuspension also increased along with the trophic states of lakes increased and dissolved organic matter (DOM), nitrate, and Fe³⁺ presented in sediment resuspension were the main photosensitizers for OH production. All these results indicate that the increase of trophic states of lakes leads to the accumulation of organic phosphorus and OH, resulting in more dissolved phosphate photo-released, which accelerate the eutrophication process in a form of positive feedback.
Afficher plus [+] Moins [-]Arsenic enrichment in groundwater and associated health risk in Bari doab region of Indus basin, Punjab, India
2020
Kumar, Anand | Singh, Chander Kumar
Contaminated groundwater is considered as one of the most important pathways of human exposure to the geogenic contaminants. Present study has been conducted in a part of Indus basin to investigate the presence and spatial distribution of arsenic (As) and other trace metals in groundwater. The As concentration varies from bdl-255.6 μg/L and 24.6% of the 73 collected groundwater samples have As above world health organization (WHO) guideline of 10 μg/L. High concentration of As is found along the newer alluvium of Ravi River. As is found with high bicarbonate (HCO3−) and Iron (Fe) and low nitrate (NO3−) indicating reductive dissolution of Fe bearing minerals. However, silicate weathering along with high sulphate (SO42) and positive oxidation-reduction potential (ORP) indicates mixed redox conditions. Weathering of minerals along with other major hydrogeochemical process are responsible for composition of groundwater. With 31.5% of the samples, sodium bicarbonate (Na–HCO3) is the major water facies followed by magnesium bicarbonate (Mg–HCO3) in 30% of samples. As, Fe and other trace metals including copper (Cu), cadmium (Cd), chromium (Cr), zinc (Zn) were used to calculate the health risk for children and adults in the region. Out of 73 samples, 58% has high Fe, 32.8% has high Zn, and 4.1% has high Cd which are above the prescribed limits of WHO guidelines. Health risk of the population has been assessed using chronic dose index (CDI), hazardous quotients (HQ) and hazardous index (HI) for children and adults. The mean CDI values follows the order as Fe > Zn > Cu > As > Cr > Cd, while the HQ values indicates high As hazards for both children and adults. 43.8% of the groundwater samples have high HI for adults, however, 49.3% has high HI for children indicating higher risk for children compared to adults. A large-scale testing should be prioritized to test the wells for As and other trace metals in the study region to reduce health risks.
Afficher plus [+] Moins [-]Per- and polyfluoroalkyl substances (PFASs) in blood of captive Siberian tigers in China: Occurrence and associations with biochemical parameters
2020
Wang, Yajun | Yao, Jingzhi | Dai, Jiayin | Ma, Liying | Liu, Dan | Xu, Haitao | Cui, Qianqian | Ma, Jianzhang | Zhang, Hongxia
Per- and polyfluoroalkyl substances (PFASs) have been ubiquitously detected in the environment and marine animals. However, little is known about these substances and their associations with health parameters in wild terrestrial mammals. In this study, we determined PFAS levels and distribution in the blood of captive Siberian tigers in Harbin, China, and evaluated potential exposure pathways by daily intake. In addition, for the first time, we explored the associations between serum PFAS concentrations and clinical parameters. Results showed that perfluorooctanoate (PFOA) was the dominant PFAS compound in blood (accounting for 64%), followed by perfluorooctanesulfonate (PFOS). In addition, 6:2 chlorinated polyfluorinated ether sulfonate (6:2 Cl-PFESA) concentrations were also detected in blood and dietary food. Furthermore, significant positive age relationships were observed for levels of perfluoroheptanoate (PFHpA), PFOA, PFOS, and 6:2 Cl-PFESA in the blood of female tigers. Results showed that PFOA and PFOS in dietary food accounted for over 70% of total daily intake of PFASs, indicating that meat consumption is a predominant exposure pathway in tigers. We also found positive associations between higher exposure to PFASs (including PFOA, PFOS, and 6:2 Cl-PFESA) and elevated serum levels of alanine transaminase (ALT), a marker of liver damage. Thus, comprehensive health assessments of PFAS burdens in wildlife are needed.
Afficher plus [+] Moins [-]Evaporation rates and pollutants emission from heated cooking oils and influencing factors
2020
Adeniran, Jamiu Adetayo | Yusuf, Rafiu Olasunkanmi | Abdulkadir, Mariam Oyinkansola | Yusuf, Muhammad-Najeeb O. | Abdulraheem, Khadija Abdulkareem | Adeoye, Babatunde Kazeem | Sonibare, Jacob Ademola | Du, Mingxi
The heating of edible oils during cooking activities promotes the emissions of pollutants that have adverse impacts on the health of humans. This study investigated the evaporative emissions of fifteen (15) commonly used cooking oils. Split-plot experimental design under the response surface methodology framework was used to study singular and interaction effects of influencing parameters (temperature, volume of cooking oil and time) on cooking oil evaporation rate and pollutants emissions (i.e. Particulate matter of aerodynamic diameter ≤1 μm (PM₁.₀); ≤2.5 μm (PM₂.₅); ≤10 μm (PM₁₀); Total Suspended Particulate (TSP); Total Volatile Organic Compounds -TVOCs, and Carbon Monoxide- CO) on a groundnut oil sample that served as a case study. Obtained values of density, viscosity, kinematic viscosity, smoke, flash and fire points were; 873–917 kg/m³; 1.12–9.7 kg/ms; 2.4–3.4 m²/s; 96 -100 °C; 124–179 °C and 142–186 °C, respectively. The role of temperature as the most significant parameter influencing the rate of evaporative emissions was established. Evaporation rate and pollutants emission from unrefined samples were the highest. The restricted maximum likelihood (REML) analysis results suggested a strong relationship between the actual values and the predicted values as R-squared values obtained were greater than 0.8 for all the responses. These results suggest that minimal rates of evaporation and pollutants emission from heating cooking oils can be achieved with a high volume of the cooking oil at moderate temperature levels.
Afficher plus [+] Moins [-]The individual and combined effects of cadmium, polyvinyl chloride (PVC) microplastics and their polyalkylamines modified forms on meiobenthic features in a microcosm
2020
Wakkaf, Takwa | Allouche, Mohamed | Harrath, Abdel Halim | Mansour, Lamjed | Alwasel, Saleh | Mohamed Thameemul Ansari, Kapuli Gani | Beyrem, Hamouda | Sellami, Badreddine | Boufahja, Fehmi
A microcosm experiment was carried out to study the ecotoxicity and interactions between heavy metals and polyvinyl chloride microplastics. Fifteen treatments were tested and results were examined after one month. In details, this work aims to study the ecotoxicological effects of cadmium (10 and 20 mg kg⁻¹ Dry Weight DW), polyvinyl chloride (PVC) and its modified forms; PVC-DETA (PD) and PVC-TETA (PT) (20 and 40 mg kg⁻¹ DW), separately and in mixtures, on meiofauna from Bizerte lagoon (NE Tunisia) with focus on nematode features. The results obtained showed that individual treatments were toxic for meiofauna and particularly for free-living nematodes. No clear trends characterized the numerical responses but significant reductions were observed for diversity indices. Moreover, the binary combinations of contaminants have a lesser toxic effect compared to their individual effects. This effect could be related to the high-capacity chelating ability of PVC and its polymers against cadmium.
Afficher plus [+] Moins [-]Physiological effects of toxic elements on a wild nightjar species
2020
Espín, Silvia | Sánchez-Virosta, Pablo | Zamora-Marín, José M. | León-Ortega, Mario | Jiménez, Pedro | Zamora-López, Antonio | Camarero, Pablo R. | Mateo, Rafael | Eeva, Tapio | García-Fernández, Antonio J.
Nightjars are considered human-tolerant species due to the population densities reached in strongly managed landscapes. However, no studies have been done evaluating metal-related effects on physiology, condition or fitness in any nightjar species. The main aim of this study was to evaluate how metal exposure affects physiology and condition in red-necked nightjar (Caprimulgus ruficollis) populations inhabiting three different environments in southeastern Spain: agricultural-urban area (n = 15 individuals), mining area (n = 17) and control area (n = 16).Increased plasma mineral levels (magnesium and calcium) and alkaline phosphatase (ALP) activity were observed in breeding females, and ALP was significantly higher in young birds due to bone growth and development. In the mining-impacted environment, nightjars showed decreased retinol (17.3 and 23.6 μM in the mining area and control area), uric acid (28.8 and 48.6 mg/dl in the mining area and control area) and albumin (16.2 and 19.6 g/l in the mining area and control area), probably impaired by a combination of toxic metal exposure and low prey quantity/quality in that area. Moreover, they showed increased plasma tocopherol levels (53.4 and 38.6 μM in the mining area and control area) which may be a response to cope with metal-induced oxidative stress and lipid peroxidation. Blood concentrations of toxic metals (As, Pb, Cd and Hg) were negatively associated with calcium, phosphorus, magnesium, ALP, total proteins and body condition index. This could lead to metal-related disorders in mineral metabolism and ALP activity that may potentially increase the risk of skeletal pathologies and consequent risk of fractures in the long term, compromising the survival of individuals. Further studies need to be carried out to evaluate potential metal-related effects on the antioxidant status and bone mineralization of nightjars inhabiting mining environments.
Afficher plus [+] Moins [-]Butylated hydroxytoluene induces dysregulation of calcium homeostasis and endoplasmic reticulum stress resulting in mouse Leydig cell death
2020
Ham, Jiyeon | Lim, Whasun | Whang, Kwang-Youn | Song, Gwonhwa
Butylated hydroxytoluene (BHT) is a synthetic phenolic antioxidant that has been used as an additive for fat- or oil-containing foods. The exposure index value increases with extended usage of the chemical. Further, estimated total amount of BHT could exceed standard regulation, considering dietary intake or another exposure. Although BHT may induce side effects in reproductive systems, adequate research had not yet been performed to confirm them. In this study, we investigated the effects of BHT on mouse Leydig cells (TM3), which are components of testis. Our results indicated that BHT suppressed cellular proliferation and induced cell cycle arrest in TM3 cells. Moreover, BHT hampered cytosolic and mitochondrial calcium homeostasis in TM3 cells. Furthermore, BHT treatment led to endoplasmic reticulum (ER) stress and DNA fragmentation, simultaneously stimulating intrinsic apoptosis signal transduction. To elucidate the mode of action of BHT on Leydig cells, we performed western blot analysis and confirmed the activation of the PI3K/AKT and MAPK pathways. Collectively, our results demonstrated that BHT has toxic effects on mouse Leydig cells via induction of calcium dysregulation and ER-mitochondria dysfunction.
Afficher plus [+] Moins [-]Does soil CuO nanoparticles pollution alter the gut microbiota and resistome of Enchytraeus crypticus?
2020
Ma, Jun | Chen, Qing-Lin | O’Connor, Patrick | Sheng, G Daniel
Growing evidence suggests that metallic oxide nanoparticles can pose a severe risk to the health of invertebrates. Previous attention has been mostly paid to the effects of metallic oxide nanoparticles on the survival, growth and physiology of animals. In comparison, the effects on gut microbiota and incidence of antibiotic resistance genes (ARGs) in soil fauna remain poorly understood. We conducted a microcosm study to explore the responses of the non-target soil invertebrate Enchytraeus crypticus gut microbiota and resistomes to copper oxide nanoparticles (CuO NPs) and copper nitrate by using bacterial 16S rRNA gene amplicons sequencing and high throughput quantitative PCR. The results showed that exposure to Cu2+ resulted in higher bioaccumulation (P < 0.05) and lower body weight and reproduction (P < 0.05) of Enchytraeus crypticus than exposure to CuO NPs. Nevertheless, exposure to CuO NPs for 21 days markedly increased the alpha-diversity of the gut microbiota of Enchytraeus crypticus (P < 0.05) and shifted the gut microbial communities, with a significant decline in the relative abundance of the phylum Planctomycetes (from 37.26% to 19.80%, P < 0.05) and a significant elevation in the relative abundance of the phyla Bacteroidetes, Firmicutes and Acidobacteria (P < 0.05). The number of detected ARGs in the Enchytraeus crypticus gut significantly decreased from 45 in the Control treatment to 16 in the Cu(NO3)2 treatment and 20 in the CuO NPs treatment. The abundance of ARGs in the Enchytraeus crypticus gut were also significantly decreased to 38.48% when exposure to Cu(NO3)2 and 44.90% when exposure to CuO NPs (P < 0.05) compared with the controls. These results extend our understanding of the effects of metallic oxide nanoparticles on the gut microbiota and resistome of soil invertebrates.
Afficher plus [+] Moins [-]Investigating arsenic impact of ACC treated timbers in compost production (A case study in Christchurch, New Zealand)
2020
Safa, Majeed | O’Carroll, Daniel | Mansouri, Nazanin | Robinson, Brett | Curline, Greg
The arsenic concentration is an important issue in compost production. The main inputs of a compost factory, including kerbsides, green wastes, food industry wastes, and river weeds are investigated in this study. Also, this study investigated how treated timbers, ashes, and other contamination can impact arsenic concentration in compost production. The results showed that most treated timbers and all ashes of treated and untreated timbers contained significant amounts of arsenic. These results revealed that the presence of a small amount of treated timber ashes can significantly increase the arsenic concentration in composts. The results of the study show the arsenic concentration in compost increase during cold months, and it dropped during summer, which would be mostly because of high arsenic concentration in ashes of log burners. This study shows ashes of burning timbers can impact arsenic contamination mostly because of using Copper-Chrome-Arsenic wood preservatives (CCA). Also, the lab results show the arsenic level even in ashes of untreated timber is around 96 ppm. The ashes of H3, H4, and H5 treated timbers contain approximately 133,000, 155,000, and 179,000 ppm of arsenic, which one kg of them can increase arsenic concentration around 10 ppm in 13.3, 15.5 and 17.9 tons of dry compost products. The main problem is many people look at ashes and treated timber as organic materials; however, ashes of treated and untreated timbers contained high concentrations of arsenic. Therefore, it was necessary to warn people about the dangers of putting any ashes in organic waste bins.
Afficher plus [+] Moins [-]The imidacloprid remediation, soil fertility enhancement and microbial community change in soil by Rhodopseudomonas capsulata using effluent as carbon source
2020
Wu, Pan | Zhang, Xuewei | Niu, Tong | Wang, Yanling | Liu, Rijia | Zhang, Ying
The effects of Rhodopseudomonas capsulata (R. capsulata) in the treated effluent of soybean processing wastewater (SPW) on the remediation of imidacloprid in soil, soil fertility, and the microbial community structure in soil were studied. Compared with the control group, with the addition of effluent containing R. capsulata, imidacloprid was effectively removed, soil fertility was enhanced, and the microbial community structure was improved. Molecular analysis indicated that imidacloprid could exert induction effects on expression of cpm gene and regulation effects on the synthesis of cytochrome P450 monooxygenases (P450) by activating HKs gene in two-component system (TCS). For R. capsulata, this induction process required 1 day. The synthesis of P450 occurred 1 day after inoculation, because R. capsulata are a type of archaea and imidacloprid is an environmental stress. Before expression of the cpm gene and synthesis of P450, R. capsulata need a period of time to adapt to external imidacloprid stimulation. However, the lack of organic matter in the soil cannot sustain R. capsulata growth for more than 1 day. In four groups with added effluent, the remaining organic matter in the effluent provided a sufficient carbon source and energy for R. capsulata. Five days later, the microbial community structure was improved by R. capsulata in the soil. The new technique could be used to remediate imidacloprid, enhance soil fertility, treat SPW and realize the recycling and reuse of wastewater and R. capsulata cells.
Afficher plus [+] Moins [-]