Affiner votre recherche
Résultats 1661-1670 de 7,214
Foliar application of lambda-cyhalothrin modulates root exudate profile and the rhizosphere bacteria community of dioecious Populus cathayana
2022
He, Yue | Zhu, Zuodong | Zhou, Zhenghu | Lu, Tao | Kumar, Amit | Xia, Zhichao
Dioecious plants show sexual differences in resistance traits to abiotic stresses. However, the effects of exogenous pesticide application on female and male plant growth and their associated adaptation mechanisms are unclear. Our study investigated the effects of the broad-spectrum pesticide lambda-cyhalothrin (λ-CY) on dioecious Populus cathayana growth and explored the factors through which λ-CY changed the rhizosphere bacterial community and physicochemical soil properties via sex-specific metabolomics. The sequential application of λ-CY significantly suppressed male shoot- and root biomass, with little effect on the growth of females. Females possessed a higher intrinsic chemo-diversity within their root exudates, and their levels of various metabolites (sugars, fatty acids, and small organic acids) increased after exposure to λ-CY with consequences on bacterial community composition. Maintaining high bacterial alpha diversity and recruiting specific bacterial groups slowed down the loss of rhizosphere nutrients in females. In contrast, the reduction in bacterial alpha diversity and network structure stability in males was associated with lower rhizosphere nutrient availability. Spearman's correlation analysis revealed that several bacterial groups were positively correlated with the root secretion of lipids and organic acids, suggesting that these metabolites can affect the soil bacterial groups actively involved in the nutrient pool. This study provided novel insights that root exudates and soil microbial interactions may mediate sex-specific differences in response to pesticide application.
Afficher plus [+] Moins [-]Marine plastics in Mediterranean islands: Evaluating the distribution and composition of plastic pollution in the surface waters along four islands of the Western Sea Basin
2022
Fagiano, V. | Compa, M. | Alomar, C. | García-Marcos, K. | Deudero, S.
To study the spatial distribution of sea surface plastics in marine protected and non-protected areas, 65 sea surface trawls were carried out using a Hydro-bios manta net coupled with a 335-μm mesh. A total of 19 sampling sites along the coastal waters of Mallorca, the “Parque Nacional Marítimo-Terrestre del Archipiélago de Cabrera” and Menorca in the Balearic Islands as well as along coastal waters of The Natural Park of Columbretes Islands (NW Mediterranean Sea) were sampled. A total of 10,637 plastic items were identified and a subset of these items was categorized by shape, color, size and polymer composition. Plastic particles were found at each sampling site and in all samples. No microscale nor mesoscale variability in floating marine plastics abundance (particles/m²) was encountered throughout the study area where similar values were found in protected areas with no local land-based contamination sources, such as Columbretes [0.04 (±0.03) particles/m²], and in high anthropized areas, such as the island of Mallorca [0.04 (±0.07) particles/m²]. However, differences were found in characteristics of plastic items (shape, polymer, and size range), with the protected area of Columbretes characterized by the presence of the highest density of very small plastic items composed mainly of fragments (93%). Quantified plastics from the marine environment were composed mainly of polyethylene (PE, 63.3%), polypropylene (PP; 24.9%), polycarbonate (PC; 4.6%) and polystyrene (PS, 3.3%). The polymer composition showed a homogenous composition between islands and differences were detected only amongst Columbretes and the other islands. Results from this study provide further evidence of the ubiquity of plastics in the marine environment and highlight that remote and protected areas, such as Columbretes, are not exempt from plastic pollution, but receptor areas for small and aged floating plastics composed mainly by fragments, which might have potentially harmful effects on protected ecosystems.
Afficher plus [+] Moins [-]Occurrence and distribution of Carbapenem-resistant Enterobacterales and carbapenemase genes along a highly polluted hydrographic basin
2022
Teixeira, Pedro | Tacão, Marta | Henriques, Isabel
We determined the distribution and temporal variation of Carbapenem Resistant Enterobacterales (CRE), carbapenemase-encoding genes and other antibiotic resistance genes (ARGs) in a highly polluted river (Lis River; Portugal), also assessing the potential influence of water quality to this distribution. Water samples were collected in two sampling campaigns performed one year apart (2018/2019) from fifteen sites and water quality was analyzed. CRE were isolated and characterized. The abundance of four ARGs (blaNDM, blaKPC, tetA, blaCTX₋M), two Microbial Source Tracking (MST) indicators (HF183 and Pig-2-Bac) and the class 1 integrase gene (IntI1) was measured by qPCR. confirmed the poor quality of the Lis River water, particularly in sites near pig farms. A collection of 23 CRE was obtained: Klebsiella (n = 19), Enterobacter (n = 2) and Raoultella (n = 2). PFGE analysis revealed a clonal relationship between isolates obtained in different sampling years and sites. All CRE isolates exhibited multidrug resistance profiles. Klebsiella and Raoultella isolates carried blaKPC while Enterobacter harbored blaNDM. Conjugation experiments were successful for only four Klebsiella isolates. All ARGs were detected by qPCR on both sampling campaigns. An increase in ARGs and IntI1 abundances was detected in sites located downstream of wastewater treatment plants. Strong correlations were observed between blaCTX₋M, IntI1 and the human-pollution marker HF183, and also between tetA and the pig-pollution marker Pig-2-bac, suggesting that both human- and animal-derived pollution in the Lis River are a potential source of ARGs. Plus, water quality parameters related to eutrophication and land use were significantly correlated with ARGs abundances. Our findings demonstrated that the Lis River encloses high levels of antibiotic resistant bacteria and ARGs, including CRE and carbapenemase-encoding genes. Overall, this study provides a better understanding on the impacts of water pollution resulting from human and animal activities on the resistome of natural aquatic systems.
Afficher plus [+] Moins [-]Apoptosis and blood-testis barrier disruption during male reproductive dysfunction induced by PAHs of different molecular weights
2022
Zhang, Lin | Ji, Xiaoli | Ding, Fan | Wu, Xuan | Tang, Ning | Wu, Qing
The association between polycyclic aromatic hydrocarbons (PAHs) and male reproductive dysfunction has attracted increasing attention. The purpose of this study was to compare the male reproductive toxicity of multiple PAHs and to investigate the underlying molecular mechanisms. TM4 cells (mouse testicular Sertoli cells, SCs) were treated with benzo(a)pyrene (BaP), pyrene (Py), fluoranthene (Fl) and phenanthrene (Phe) (0, 0.1, 1, 10, 50, or 100 μM) for varying time points (4, 12, 24, or 48 h), and male C57BL/6 mice were administered BaP and Py (0, 10, 50, or 100 mg/kg body weight) for 14 days based on the cell experimental results. Histopathological examination, western blotting, ELISA, biochemical assays, RT–PCR, flow cytometry, JC-1 staining and trans-epithelium electrical resistance (TEER) measurements were used to assess apoptosis, blood-testis barrier (BTB) integrity, intracellular calcium ([Ca²⁺]ᵢ) concentrations and oxidative stress (OS). The results revealed that the mRNA levels and enzymatic activities of CYP450 and GST family members; levels of ROS, MDA, cleaved caspase 3 (c-caspase 3), caspase 9, Bax, and cytochrome C (CytC); and numbers of TUNEL-positive cells were significantly increased by BaP and Py, while levels of AhR, GSH, SOD, CAT, Bcl-2 and ΔΨm were decreased. Additionally, BaP and Py notably interfered with tight junctions (TJs) and adherens junctions (AJs) in the BTB. Intriguingly, BaP, but not Py, induced [Ca²⁺]ᵢ overload and gap junction (GJ) destruction. There was no dramatic effect of Fl and/or Phe on any of the above parameters except that slight cytotoxicity was observed with higher doses of Fl. Collectively, these findings showed that BaP and Py elicited SC apoptosis and BTB disruption involving mitochondrial dysfunction and OS, but [Ca²⁺]ᵢ fluctuation and GJ injury were only observed with BaP-induced reproductive toxicity. The male reproductive toxicity of the selected PAHs was ranked in the order of BaP > Py > Fl > Phe.
Afficher plus [+] Moins [-]Leaching of PBDEs from microplastics under simulated gut conditions: Chemical diffusion and bioaccumulation
2022
Sun, Bingbing | Zeng, E. Y. (Eddy Y.)
Considerable efforts on exposure assessment of microplastics (MPs) as an agent in transport of toxic contaminants have been performed in organisms. However, chemical diffusion of inherent hydrophobic organic contaminants from MPs under simulated gut conditions is poorly examined. The present study examined the transfer kinetics of polybrominated diphenyl ethers (PBDEs) from polystyrene (PS), acrylonitrile butadiene styrene (ABS), and polypropylene (PP) MPs under gut surfactants (sodium taurocholate) at two relevant body temperatures of marine organisms, and evaluated the importance of MP ingestion in bioaccumulation of PBDEs in lugworm by a biodynamic model. Diffusion coefficients of PBDEs range from 5.82 × 10⁻²³ to 7.96 × 10⁻²⁰ m² s⁻¹ in PS, 5.49 × 10⁻²³ to 3.45 × 10⁻²⁰ m² s⁻¹ in ABS, and 5.58 × 10⁻²¹ to 5.79 × 10⁻¹⁷ m² s⁻¹ in PP, with apparent activation energies in the range of 33–148 kJ mol⁻¹. The biota–plastic accumulation factors of PBDEs leached from these plastics range from 1.44 × 10⁻⁸ to 7.15 × 10⁻⁵. Although ingestion of MPs with the common size (>0.5 mm) showed the negligible contribution to bioaccumulation of PBDEs in lugworm, their contribution in PBDEs transfer can be increased with gradual breakdown of MPs.
Afficher plus [+] Moins [-]Evaluation of the CAMS reanalysis for atmospheric black carbon and carbon monoxide over the north China plain
2022
Ding, Shuo | Liu, Dantong
Black carbon (BC) and carbon monoxide (CO) at different model levels from the Copernicus Atmosphere Monitoring Service (CAMS) reanalysis were comprehensively evaluated against observations performed simultaneously on both surface and mountain sites in winter and summer in the North China Plain for the first time. CAMS could capture the seasonal difference in BC and CO emission on both sites but showed significant and persistent biases. Biases were high on the surface site and low on the mountain site for both seasons, implying the uncertainties in emission inventories used in the CAMS reanalysis which may have more influence near source. Biases were reduced and the correlation coefficient of CAMS BC with observed BC increased when two datasets were compared on a daily basis, which suggests daily or longer time averaged CAMS BC could be more suitable for trend analysis. Although CAMS could generally reproduce the distinct diurnal variation of BC and CO on both sites, the inaccurate representation of the daily evolution of planetary boundary layer (PBL) in model may bring more uncertainties to the concentration biases on surface from midnight to early morning. BC hydrophilic ratio from CAMS displayed large biases compared to observations with no seasonal difference on both sites, which was probably resulted from the initial emission state of BC hygroscopicity for all source types in model. Uncertainties in the removal processes and the simplified aging processes in model could further induce uncertainty in modelling BC hydrophilic ratio in the CAMS. These results could not only be referenced for the improvement on CAMS reanalysis but also facilitate model or trend analysis of BC and CO pollution by utilizing the CAMS reanalysis product from both short- and long-term perspectives, which will be beneficial to both the mitigation and policy-making on primary emissions in China.
Afficher plus [+] Moins [-]First global observation of tropospheric formaldehyde from Chinese GaoFen-5 satellite: Locating source of volatile organic compounds
2022
Su, Wenjing | Liu, Cheng | Hu, Qihou | Zhang, Chengxin | Liu, Haoran | Xia, Congzi | Zhao, Fei | Liu, Ting | Lin, Jinan | Chen, Yujia
Satellite remote sensing is an important technique providing long-term and large-scale information of formaldehyde (HCHO), which plays a crucial role in atmospheric chemistry. Low signal-to-noise ratio and poor stability of the Environmental Trace Gases Monitoring Instrument (EMI) On board Gaofen-5 satellite, the first Chinese space-borne spectrometer, make HCHO retrieval extremely difficult. Here we firstly retrieved HCHO vertical column densities (VCDs) from EMI through in-flight spectral calibration, retrieval setting optimization and stripe correction. Retrieved EMI HCHO VCDs correlate well with those measured by Multi-AXis Differential Optical Absorption Spectroscopy (MAX-DOAS) with normalize mean bias (NMB) below 25%. EMI HCHO VCDs are comparable with those observed by Ozone Monitoring Instrument (OMI) and TROPOspheric Monitoring Instrument (TROPOMI). This study reveals that HCHO can be observed successfully by algorithm optimization despite of poor performance of space-borne spectrometer. The retrieved EMI HCHO VCDs are applied to locate emission sources of volatile organic compounds (VOCs).
Afficher plus [+] Moins [-]3.5-GHz radiofrequency electromagnetic radiation promotes the development of Drosophila melanogaster
2022
Wang, Yahong | Jiang, Zhihao | Zhang, Lu | Zhang, Ziyan | Liao, Yanyan | Cai, Peng
With the rapidly increasing popularity of 5G mobile technology, the effect of radiofrequency radiation on human health has caused public concern. This study explores the effects of a simulated 3.5 GHz radiofrequency electromagnetic radiation (RF-EMF) environment on the development and microbiome of flies under intensities of 0.1 W/m², 1 W/m² and 10 W/m². We found that the pupation percentages in the first 3 days and eclosion rate in the first 2 days were increased under exposure to RF-EMF, and the mean development time was shortened. In a study on third-instar larvae, the expression levels of the heat shock protein genes hsp22, hsp26 and hsp70 and humoral immune system genes AttC, TotC and TotA were all significantly increased. In the oxidative stress system, DuoX gene expression was decreased, sod2 and cat gene expression levels were increased, and SOD and CAT enzyme activity also showed a significant increase. According to the 16S rDNA results, the diversity and species abundance of the microbial community decreased significantly, and according to the functional prediction analysis, the genera Acetobacter and Lactobacillus were significantly increased. In conclusion, 3.5 GHz RF-EMF may enhance thermal stress, oxidative stress and humoral immunity, cause changes in the microbial community, and regulate the insulin/TOR and ecdysteroid signalling pathways to promote fly development.
Afficher plus [+] Moins [-]Catalytic hydrogenolysis of plastic to liquid hydrocarbons over a nickel-based catalyst
2022
Zhao, Zhigang | Li, Zheng | Zhang, Xiangkun | Li, Tan | Li, Yuqing | Chen, Xingkun | Wang, Kaige
The catalytic hydrogenolysis of a typical model compound of mulching film waste, polyethylene, was investigated as a potential way to improve economic efficiency of mulching film recycling. Nickel-based heterogeneous catalysts are proposed for polyethylene hydrogenolysis to produce liquid hydrocarbons. Among catalysts supported on various carriers, Ni/SiO₂ catalyst shows the highest activity which may due to the interactions between nickel and silica with the formation of nickel phyllosilicate. As high as 81.18% total gasoline and diesel range hydrocarbon was obtained from the polyethylene hydrogenolysis at relatively mild condition of 280 °C, and 3 MPa cold hydrogen pressure. The result is comparable to what have been reported in previous studies using noble metal catalysts. The gasoline and diesel range hydrocarbon are n-alkanes with a distribution at a range of C₄–C₂₂. The gas products are primarily CH₄ along with a small amount of C₂H₆ and C₃H₈. High yield of CH₄ as much as 9.68% was observed for the cleavage of molecule occurs along the alkane chain.
Afficher plus [+] Moins [-]Effects of ocean acidification and tralopyril on bivalve biomineralization and carbon cycling: A study of the Pacific Oyster (Crassostrea gigas)
2022
Wang, Xu | Li, Ping | Cao, Xuqian | Liu, Bin | He, Shuwen | Cao, Zhihan | Xing, Shaoying | Liu, Ling | Li, Zhi-Hua
The combined effects of emerging pollutants and ocean acidification (OA) on marine organisms and marine ecosystems have attracted increasing attention. However, the combined effects of tralopyril and OA on marine organisms and marine ecosystems remain unclear. In this study, Crassostrea gigas (C. gigas) were exposed to tralopyril (1 μg/L) and/or OA (PH = 7.7) for 21 days and a 14-day recovery acclimation. To investigate the stress response and potential molecular mechanisms of C. gigas to OA and tralopyril exposure alone or in combination, as well as the effects of OA and/or tralopyril on bivalve biomineralization and marine carbon cycling. The results showed that the combined toxicity was between that of acidification and tralopyril alone. Single or combined exposure activated the general stress defense responses of C. gigas mantle, affected energy metabolism and biomineralization of the organism and the carbon cycle of the marine ecosystem. Moreover, acidification-induced and tralopyril-induced toxicity showed potential recoverability at molecular and biochemical levels. This study provides a new perspective on the molecular mechanisms of tralopyril toxicity to bivalve shellfish and reveals the potential role of tralopyril and OA on marine carbon cycling.
Afficher plus [+] Moins [-]