Affiner votre recherche
Résultats 1671-1680 de 1,953
Strengths and weaknesses of microarray approaches to detect Pseudo-nitzschia species in the field
2013
Barra, Lucia | Ruggiero, Maria Valeria | Sarno, Diana | Montresor, Marina | Kooistra, Wiebe H. C. F.
The planktonic diatom genus Pseudo-nitzschia contains several genetically closely related species. Some of these can produce domoic acid, a potent neurotoxin. Thus, monitoring programs are needed to screen for the presence of these toxic species. Unfortunately, many are impossible to distinguish using light microscopy. Therefore, we assessed the applicability of microarray technology for detection of toxic and non-toxic Pseudo-nitzschia species in the Gulf of Naples (Mediterranean Sea). Here, 11 species have been detected, of which at least 5 are potentially toxic. A total of 49 genus- and species-specific DNA probes were designed in silico against the nuclear LSU and SSU rRNA of 19 species, and spotted on the microarray. The microarray was tested against total RNA of monoclonal cultures of eight species. Only three of the probes designed to be species-specific were indeed so within the limits of our experimental design. To assess the effectiveness of the microarray in detecting Pseudo-nitzschia species in environmental samples, we hybridized total RNA extracted from 11 seasonal plankton samples against microarray slides and compared the observed pattern with plankton counts in light microscopy and with expected hybridization patterns obtained with monoclonal cultures of the observed species. Presence of species in field samples generally resulted in signal patterns on the microarray as observed with RNA extracted from cultures of these species, but many a-specific signals appeared as well. Possible reasons for the numerous cross reactions are discussed. Calibration curves for Pseudo-nitzschia multistriata showed linear relationship between signal strength and cell number.
Afficher plus [+] Moins [-]Spatial distribution and ecotoxicological risk assessment of heavy metals in surface sediments of the southern Bohai Bay, China
2013
Hu, Bangqi | Li, Guogang | Li, Jun | Bi, Jianqiang | Zhao, Jingtao | Bu, Ruyuan
The concentrations of heavy metals (Cd, Cr, Cu, Ni, Pb, and Zn) and organic carbon in surface sediments, collected from the southern Bohai Bay, were determined to assess the potential contamination and determine the environmental risks associated with heavy metals. Results showed that heavy metal concentrations in the sediments generally met the China Marine Sediment Quality criteria. Both the ecotoxicological index and the potential ecological risk index suggest that the combined ecological risk of the six studied metals may be low, with the highest ecotoxicological potential zones located in the offshore area. The methods of enrichment factor and geoaccumulation index suggested that elevated concentrations of Cd, Cr, and Ni are presented in the region. Multivariate analysis also indicated that the lithogenic factor dominates the distribution of most part of the considered metals in the study area, whereas Cd and Cr are clearly influenced by anthropogenic inputs. The results of this study are likely to be a useful tool to authorities in charge of sustainable marine management.
Afficher plus [+] Moins [-]Immobilization of metal wastes by reaction with H₂S in anoxic basins : Concept and Elaboration
2013
Schuiling, R. D.
Metal wastes are produced in large quantities by a number of industries. Their disposal in isolated waste deposits is certain to cause many subsequent problems, because every material will sooner or later return to the geochemical cycle. The sealing of disposal sites usually starts to leak, often within a short time after the disposal site has been filled. The contained heavy metals are leached from the waste deposit and will contaminate the soil and the groundwater. It is evident that storage as metal sulfides in a permanently anoxic environment is the only safe way to handle metal wastes. The world's largest anoxic basin, the Black Sea, can serve as a georeactor. The metal wastes are sustainably transformed into harmless and immobile solids. These are incorporated in the lifeless bottom muds, where they are stored for millions of years.
Afficher plus [+] Moins [-]Development and modeling of a flat plate serpentine reactor for photocatalytic degradation of 17-ethinylestradiol
2013
Wang, Dawei | Li, Yi | Zhang, Wenlong | Wang, Qing | Wang, Peifang | Wang, Chao
A flat plate serpentine reactor modified from ultraviolet disinfection pool in municipal wastewater treatment plants was developed for the removal of 17-ethinylestradiol (EE2) for the first time. The photocatalytic degradation performance of EE2 was investigated in this serpentine reactor under different conditions such as inlet concentrations, loaded catalyst concentrations, incident radiations fluxes, and flow velocities. More than 98 % of EE2 was removed under certain conditions within 120 min. An integrated model including a six-flux adsorption–scattering model and a modified flow diffusion model was established to investigate the effect of radiation field and flow velocities, respectively. A satisfactory agreement was observed between the model simulation and experimental results, showing a potential for design and scale-up of photocatalytic reactor for wastewater treatment.
Afficher plus [+] Moins [-]Spatial and temporal trend of Chinese manure nutrient pollution and assimilation capacity of cropland and grassland
2013
Ouyang, Wei | Hao, Fanghua | Wei, Xinfeng | Huang, Moucai
Dynamics of livestock and poultry manure nutrient was analyzed at a provincial scale from 2002 to 2008. The nutrient capacity of 18 kinds of croplands and grasslands to assimilate nutrients was assessed in the same temporal–spatial scale. Manure nitrogen (N) had increased from 5.111 to 6.228 million tons (MT), while manure phosphorus (P) increased from 1.382 to 1.607 MT. Manure N and P share similar spatial patterns of yields, but proportion of specialized livestock husbandry and contribution of leading livestock categories (swine, cattle, cow, sheep, layer chicken, broiler chicken) were different. The nutrients generated from dominant seven provinces took more than about half of total manure N in China. After subtracting the chemical fertilizers, there were some manure nutrient capacities in western part of China. Risk analysis of manure nutrient pollution overload in eastern and southern parts of China was serious, which should restrict livestock's developments. Amount of chemical fertilizers applied should be reduced to make room for manure nutrients. For the sake of greenhouse effects, the emission of methane (CH₄) and nitrous oxide (NO ₓ ) emissions in China is serious for the global change, thus merits further statistics and studies. The spatial and temporal pattern of Chinese manure nutrient pollution from livestock and the assimilation capacity of cropland and grassland can provide useful information for policy development on Chinese soil environment and livestock.
Afficher plus [+] Moins [-]Short-chain chlorinated paraffins (SCCPs) in surface soil from a background area in China: occurrence, distribution, and congener profiles
2013
Wang, Xue-Tong | Zhang, Yuan | Miao, Yi | Ma, Ling-Ling | Li, Yuan-Cheng | Chang, Yue-Ya | Wu, Ming-Hong
Short-chain chlorinated paraffins (SCCPs) are extremely complex technical mixtures of polychlorinated n-alkanes with carbon chain lengths from C₁₀to C₁₃and chlorine content between 49 and 70 %. SCCPs are under consideration for inclusion in the Stockholm Convention on persistent organic pollutants. SCCPs have been used extensively in industrial production, but little is known about the pollution level in soil environment in China. In this study, levels and distribution of SCCPs in soil samples from Chongming Island were analyzed. Concentrations of total SCCPs in soil samples ranged from 0.42 to 420 ng g⁻¹, with a median of 9.6 ng g⁻¹. The ubiquitous occurrence of SCCPs in Chongming Island implied that long-range atmospheric transport and soil–air exchange may be the most important pathways for SCCP contamination in the background area. The localized SCCP contamination could be derived from an unidentified source. Hierarchical cluster analysis indicated that C₁₃- and C₁₁-congeners were predominant in most soils and C₁₀- and C₁₂-congeners dominated in the remaining soils. Cl₇- and Cl₈-congeners were on the average the most dominant chlorine congeners in nearly all soils. Principal component analysis suggested that the separation of even and odd carbon chain congeners occurred during long-range atmospheric transport and aging in soil in the study area.
Afficher plus [+] Moins [-]Impact of chronic exposure to low doses of chlorpyrifos on the intestinal microbiota in the Simulator of the Human Intestinal Microbial Ecosystem (SHIME®) and in the rat
2013
Joly, Claire | Gay-Quéheillard, Jérôme | Léké, André | Chardon, Karen | Delanaud, Stéphane | Bach, Véronique | Khorsi-Cauet, Hafida
The impact of the insecticide chlorpyrifos (CPF) on the mammalian digestive system has been poorly described. The present study aimed at evaluating the effect of chronic, low-dose exposure to CPF on the composition of the gut microbiota in a Simulator of the Human Intestinal Microbial Ecosystem: the SHIME® and in rats. The SHIME® comprises six reactor vessels (stomach to colon). The colonic segments were inoculated with feces from healthy humans. Then, the simulator was exposed to a daily dose of 1 mg of CPF for 30 days. The changes over time in the populations of bacteria were examined at different time points: prior to pesticide exposure (as a control) and after exposure. In parallel, pregnant rats were gavaged daily with 1 mg/kg of CPF (or vehicle) until the pups were weaned. Next, the rats were gavaged with same dose of CPF until 60 days of age (adulthood). Then, samples of different parts of the digestive tract were collected under sterile conditions for microbiological assessment. Chronic, low-dose exposure to CPF in the SHIME® and in the rat was found to induce dysbiosis in the microbial community with, in particular, proliferation of subpopulations of some strains and a decrease in the numbers of others bacteria. In compliance with European guidelines, the use of the SHIME® in vitro tool would help to (1) elucidate the final health effect of toxic agents and (2) minimize (though not fully replace) animal testing. Indeed, certain parameters would still have to be studied further in vivo.
Afficher plus [+] Moins [-]The porifera Hymeniacidon perlevis (Montagu, 1818) as a bioindicator for water quality monitoring
2013
Mahaut, Marie-Laure | Basuyaux, Olivier | Baudinière, Estelle | Chataignier, Claire | Pain, Julien | Caplat, Christelle
Because sponges are promising bioindicators, we present here a multispecies comparison of the bioconcentration capacity for copper, zinc and the hydrocarbon fluoranthene. The spatial distribution of sponge populations was studied in 17 areas in intertidal zones on the Lower Normandy coast (France) to determine the most common species with the highest bioaccumulation capacity. Results are compared with published data on blue mussels Mytilus edulis from the Réseau d'Observation de la Contamination Chimique biomonitoring network. A total of 720 sponge samples were collected to assess species richness. Samples were analysed for metal concentrations by flame-mode atomic absorption spectrometry. Analyses of polycyclic aromatic hydrocarbon were sub-contracted. Species richness varies according to the water mass concerned. The most common species in the study area showing the highest bioconcentration in its soft tissues is Hymeniacidon perlevis, which contains about 20 times the zinc, 44 times the copper and 16 times the fluoranthene levels found in mussels. The variability of contaminant concentrations in H. perlevis is also systematically higher than those in mussels. The results obtained for this sponge closely reflect the heterogeneous distribution of contaminants. This study demonstrates that H. perlevis has a much higher capacity to accumulate in situ contaminants than the blue mussel M. edulis. H. perlevis meets all the requirements of a good bioindicator suitable for use in an integrated monitoring programme. In the near future, controlled cultivation of H. perlevis will allow us to produce sufficient quantities of this species to carry out ecotoxicological tests and in situ biomonitoring by caging.
Afficher plus [+] Moins [-]Identification and quantitative detection of Legionella spp. in various aquatic environments by real-time PCR assay
2013
Kao, Po-Min | Tung, Min-Che | Hsu, Bing-Mu | Chiu, Yi-Chou | She, Cheng-Yu | Shen, Shumin | Huang, Youli | Huang, Wen-Chien
In this study, a SYBR green quantitative real-time PCR was developed to quantify and detect the Legionella spp. in various environmental water samples. The water samples were taken from watershed, water treatment plant, and thermal spring area in Taiwan. Legionella was detected in 13.6 % (24/176), and the detection rate for river water, raw drinking water, and thermal spring water was 10, 21.4, and 16.6 %, respectively. Using real-time PCR, concentration of Legionella spp. in detected samples ranged between 9.75 × 10(4) and 3.47 × 10(5) cells/L in river water, 6.92 × 10(4) and 4.29 × 10(5) cells/L in raw drinking water, and 5.71 × 10(4) and 2.12 × 10(6) cells/L for thermal spring water samples. The identified species included Legionella pneumophila (20.8 %), Legionella jordanis (4.2 %), Legionella nautarum (4.2 %), Legionella sp. (4.2 %), and uncultured Legionella sp. (66.6 %). The presence of L. pneumophila in aquatic environments suggested a potential public health threat that must be further examined.
Afficher plus [+] Moins [-]Impact of sewage sludge spreading on nickel mobility in a calcareous soil: adsorption–desorption through column experiments
2013
Mamindy-Pajany, Yannick | Sayen, Stéphanie | Guillon, Emmanuel
A soil column adsorption–desorption study was performed on an agricultural calcareous soil to determine the impact of sewage sludge spreading on nickel mobility. Ni adsorption experiments were followed by desorption tests involving the following liquid extractants: water, calcium (100 mg/L), oxalic acid (525 mg/L equivalent to 100 mg carbon/L), and sludge extracts (0.5 and 2.5 g/L). Desorption tests were also conducted after sewage sludge spreading at three application rates (30, 75, and 150 t/ha). According to the breakthrough curve, Ni adsorption was irreversible and occurred mainly through interactions with calcite surface sites. Nickel desorption from the soil column was promoted in presence of significant dissolved organic carbon (DOC) concentration as observed with oxalic acid elution and sludge extract at 2.5 g/L. In sludge-amended soil columns, the maximum Ni levels occurred in first pore volumes, and they were positively correlated to the sludge application rate. The presence of DOC in leaching waters was the main factor controlling Ni desorption from the sludge-amended soil columns. This finding implies that DOC generated by sludge applied on calcareous soils might facilitate the leaching of Ni due to the formation of soluble Ni–organic complexes. Thus, sludge application can have potential environmental impacts in calcareous soils, since it promotes nickel transport by decreasing Ni retention by soil components.
Afficher plus [+] Moins [-]