Affiner votre recherche
Résultats 1691-1700 de 7,214
Enhanced toxicity effects of iron particles together with PFOA in drinking water
2022
Qin, Xinyi | Zhuang, Yuan | Ma, Juan | Liu, Sijin | Shi, Baoyou
Iron particles present in drinking water distribution systems (DWDSs) could cause discoloration, while organic pollutants in DWDSs, such as perfluorooctanoic acid (PFOA), could be enriched by iron particles. However, little is known about the enhanced effects of PFOA and iron particles in DWDSs. To fill in these knowledge gaps, herein, iron-PFOA (FEP) particles were generated using residual chlorine as an oxidant in drinking water conditions and then separated into different sizes (ranging from small to large: FEP-S, FEP-M ,and FEP-L). FEP-S harbored the greatest cytotoxicity among the sizes. Interestingly, our data revealed that the PFOA released from FEP particles transformed into PFOS (perfluorooctane sulfonate) upon digestion in the gastrointestinal environment (GI), and FEP-L bored the strongest transformation, showing a toxicity profile that was distinct from that of FEP-S. Furthermore, mechanistic studies revealed that FEP per se should be accountable for the conversion of PFOA to PFOS dependent on the generation of hydroxyl radicals (·OH) in GI, and that FEP-L revealed the greatest production of ·OH. Collectively, these results showed how iron particles and PFOA could result in enhanced toxicity effects in drinking water: (i) PFOA could increase the toxicity of iron particles by reducing particle size and inducing higher generation of ·OH; (ii) iron particles could induce the transformation of PFOA into more toxic PFOS through digestion.
Afficher plus [+] Moins [-]Bioremediation of micropollutants using living and non-living algae - Current perspectives and challenges
2022
Ratnasari, Anisa | Syafiuddin, Achmad | Zaidi, Nur Syamimi | Hong Kueh, Ahmad Beng | Hadibarata, Tony | Prastyo, Dedy Dwi | Ravikumar, Rajagounder | Sathishkumar, Palanivel
The emergence and continual accumulation of industrial micropollutants such as dyes, heavy metals, organic matters, and pharmaceutical active compounds (PhACs) in the ecosystem pose an alarming hazard to human health and the general wellbeing of global flora and fauna. To offer eco-friendly solutions, living and non-living algae have lately been identified and broadly practiced as promising agents in the bioremediation of micropollutants. The approach is promoted by recent findings seeing better removal performance, higher efficiency, surface area, and binding affinity of algae in various remediation events compared to bacteria and fungi. To give a proper and significant insight into this technology, this paper comprehensively reviews its current applications, removal mechanisms, comparative efficacies, as well as future outlooks and recommendations. In conducting the review, the secondary data of micropollutants removal have been gathered from numerous sources, from which their removal performances are analyzed and presented in terms of strengths, weaknesses, opportunities, and threats (SWOT), to specifically examine their suitability for selected micropollutants remediation. Based on kinetic, isotherm, thermodynamic, and SWOT analysis, non-living algae are generally more suitable for dyes and heavy metals removal, meanwhile living algae are appropriate for removal of organic matters and PhACs. Moreover, parametric effects on micropollutants removal are evaluated, highlighting that pH is critical for biodegradation activity. For selective pollutants, living and non-living algae show recommendable prospects as agents for the efficient cleaning of industrial wastewaters while awaiting further supporting discoveries in encouraging technology assurance and extensive applications.
Afficher plus [+] Moins [-]Size-fractionated PM-bound PAHs in urban and rural atmospheres of northern Thailand for respiratory health risk assessment
2022
Insian, Wittawat | Yabueng, Nuttipon | Wiriya, Wan | Chantara, Somporn
Size-fractionated particulate matters (SPMs) in a range of 9.0 to 0.43 μm, classified based on aerodynamic diameter (dₐₑ) as fine PMs (0.43 μm ≤ dₐₑ < 2.1 μm) and coarse PMs (2.1 μm ≤ dₐₑ < 9.0 μm) were collected by cascade impactors (7 fractions) during smoke haze (SH) and non-smoke haze (NSH) seasons in urban and rural areas of Chiang Mai, Thailand. Their polycyclic aromatic hydrocarbons (PAHs) compositions were determined for respiratory health risk assessment. During SH episode, concentrations of SPMs and PAHs in the rural area were approximately two times higher than in the urban area and about 62–68% of the SPMs were fine particles. Conversely, during NSH season the concentrations in the urban area were higher due to traffic emission. The finest particle sizes (0.65–0.43 μm) contained the highest PAHs concentrations among the other PM sizes. Benzo[b]fluoranthene was a main PAH component found during SH season suggesting biomass burning is a major pollutant source. High molecular weight (5–6 rings) PAHs with high carcinogenicity were likely to concentrate in fine particles. Distribution patterns of SPMs and PAHs during SH season were bimodal with the highest peak at a fine size range (0.65–0.43 μm) and a small peak at a coarse size range (5.8–4.7 μm). Respiratory health risk was estimated based on toxicity equivalent concentrations of PAHs bound-SPMs and inhalation cancer risk (ICR). Relatively high ICR values (1.14 × 10⁻⁴ (rural) and 6.80 × 10⁻⁵ (urban)) were found during SH season in both areas, in which fine particles played an important role. It revealed that high concentration of fine particles in ambient air is related to high respiratory health risk due to high content of carcinogenic substances.
Afficher plus [+] Moins [-]Additional sampling using in-situ portable X-ray fluorescence (PXRF) for rapid and high-precision investigation of soil heavy metals at a regional scale
2022
Qu, Mingkai | Guang, Xu | Liu, Hongbo | Zhao, Yongcun | Huang, Biao
Traditional soil heavy metal (HM) investigation usually costs a lot of human and material resources. In-situ portable X-ray fluorescence spectrometry (PXRF) is a cheap and rapid HM analysis method, but its analysis accuracy is usually affected by spatially non-stationary field environment factors. In this study, residual sequential Gaussian co-simulation (RCoSGS) was first proposed to incorporate both continuous and categorical auxiliary variables for spatial simulation of soil Cu. Next, additional in-situ PXRF sampling sites (n = 300) were allocated in the subareas with high, medium, and low conditional variances in the proportions of 50%, 33.33%, and 16.67%, respectively. Then, robust geographically weighted regression (RGWR) was established to correct the spatially non-stationary effects of field environmental factors on in-situ PXRF and further compared with the traditionally-used multiple linear regression (MLR) and basic GWR in correction accuracy. Finally, RCoSGS with the RGWR-corrected in-situ PXRF as part of hard data (RCoSGS-PXRF) was established and further compared with the model with one or multiple auxiliary variables in the spatial simulation accuracy. Results showed that (i) RCoSGS effectively incorporated both SOM and land-use types and obtained higher spatial simulation accuracy (RI = 37.52%) than residual sequential Gaussian simulation with land-use types (RI = 19.44%) and sequential Gaussian co-simulation with SOM (RI = 20.92%); (ii) RGWR significantly weakened the spatially non-stationary effects of field environmental factors on in-situ PXRF, and RGWR (RI = 58.96%) and GWR (RI = 39.61%) obtained higher correction accuracy than MLR; (iii) the RGWR-corrected in-situ PXRF (RI = 66.57%) brought higher spatial simulation accuracy than both land-use types and SOM (RI = 37.52%); (iv) RCoSGS-PXRF obtained the highest spatial simulation accuracies (RI = 83.74%). Therefore, the proposed method is cost-effective for the rapid and high-precision investigation of soil HMs at a regional scale.
Afficher plus [+] Moins [-]A critical review of advances in reproductive toxicity of common nanomaterials to Caenorhabditis elegans and influencing factors
2022
Yao, Yongshuai | Zhang, Ting | Tang, Meng
In recent decades, nanotechnology has rapidly developed. Therefore, there is growing concern about the potential environmental risks of nanoparticles (NPs). Caenorhabditis elegans (C. elegans) has been used as a powerful tool for studying the potential ecotoxicological impacts of nanomaterials from the whole animal level to single cell level, especially in the area of reproduction. In this review, we discuss the reproductive toxicity of common nanomaterials in C. elegans, such as metal-based nanomaterial (silver nanoparticles (NPs), gold NPs, zinc oxide NPs, copper oxide NPs), carbon-based nanomaterial (graphene oxide, multi-walled carbon nanotubes, fullerene nanoparticles), polymeric NPs, silica NPs, quantum dots, and the potential mechanisms involved. This insights into the toxic effects of existing nanomaterials on the human reproductive system. In addition, we summarize how the physicochemical properties (e.g., size, charge, surface modification, shape) of nanomaterials influence their reproductive toxicity. Overall, using C. elegans as a platform to develop rapid detection techniques and prediction methods for nanomaterial reproductive toxicity is expected to reduce the gap between biosafety evaluation of nanomaterials and their application.
Afficher plus [+] Moins [-]Spatial characteristics of fine particulate matter in subway stations: Source apportionment and health risks
2022
Ji, Wenjing | Zhao, Kaijia | Liu, Chenghao | Li, Xiaofeng
Air in subway stations is typically more polluted than ambient air, and particulate matter concentrations and compositions can vary greatly by location, even within a subway station. However, it is not known how the sources of particulate matter vary between different areas within subway stations, and source-specific health risks in subway stations are unclear. We analyzed the spatial characteristics of particulate matter by source and calculated source-specific health risks on subway platforms and concourses and in station offices by integrating source apportionment with health risk assessments. A total of 182 samples were collected in three areas in six subway stations in Nanjing, China. Enrichment factors and the positive matrix factorization receptor model were used to identify major sources. The carcinogenic and non-carcinogenic health risks to subway workers and passengers were evaluated to determine control priorities. Seven sources of particulate matter were identified in each area, with a total of four subway sources and six outdoor sources over all the areas. The source contributions to total element mass differed significantly from the source contributions to human health risks. Overall, subway sources contributed 48% of total element mass in the station office and 75% and 60% on the concourse and platform, respectively. Subway-derived sources accounted for 54%, 81%, and 71% of non-carcinogenic health risks on station platforms, concourses, and office areas, respectively. The corresponding values for carcinogenic risks were 51%, 86%, and 86%. Among the elements, cobalt had the largest contributions to carcinogenic and non-carcinogenic risks, followed by manganese for non-carcinogenic risks and hexavalent chromium for carcinogenic risks. Reducing emissions from subway sources could effectively protect the health of subway workers and passengers.
Afficher plus [+] Moins [-]Mechanistic insight and bifunctional study of a sulfide Fe3O4 coated biochar composite for efficient As(III) and Pb(II) immobilization in soils
2022
Wang, Gehui | Peng, Cheng | T̤āriq, Muḥammad | Lin, Sen | Wan, Jiang | Liang, Weiyu | Zhang, Wei | Zhang, Lehua
Trace elements contamination in soil has aroused global concern nowadays, but the efficient, multifunctional, and economically viable method still remains a major challenge. In this research study, a sulfide Fe₃O₄ coated biochar composite (S/Fe-BC) has been synthesized successfully and applied to As(III)/Pb(II) co-contaminated soil. The immobilization efficiency of S/Fe-BC (2%) for the two elements exceeded 90%, and could ensure the synchronous and efficient immobilization in a wide range of pH (4.0–8.0). The TCLP-As and Pb amounts were sharply dropped after 28 days of stabilization; Meanwhile, a majority of exchangeable and carbonate-bound fractions of As and Pb were transferred into the less accessible residuals. Compared with Fe₃O₄ coated BC, the good immobilization performance of S/Fe-BC was mainly related to the enhancement of specific surface area, improvement of ionic exchange process, followed by the increase of Pb(II) precipitation and As(III) oxidation. Furthermore, competitive and synergistic effects were observed. In depth characterization analyses revealed the simultaneous immobilization mechanisms involving the adsorption, precipitation (Pb(OH)₂, PbSO₄, and PbS), co-precipitation (PbFeAsO₄(OH)), and oxidation. Conclusively, outstanding performance of S/Fe-BC composite is considered as a good multifunctional potential candidate for the immobilization of trace elements from a soil system.
Afficher plus [+] Moins [-]Comparing resistome profiles from anthropogenically impacted and non-impacted areas of two South Shetland Islands – Maritime Antarctica
2022
Centurion, VB | Silva, JB | Duarte, AWF | Rosa, LH | Oliveira, VM
Whalers Bay, in Deception Island, has one of the most anthropogenically impacted areas in Maritime Antarctica. However, considering the volcanic nature (high concentrations of heavy metals) of Deception Island's soils, this putative anthropogenic impact should be carefully investigated. In this context, the objective of this study was to compare resistome profiles of impacted and non-impacted areas in Deception Island (Whalers Bay, Crater Lake, and Fumarole Bay) and Livingston Island (Hannah Point) in order to investigate the microbiome tolerance/resistance mechanisms selected as a function of environmental drivers. Metagenomics was used to search for genes conferring resistance/tolerance to antibiotics, biocides, and heavy metals. Whalers Bay has a greater diversity of antibiotic, biocide, and heavy metal resistance classes found in its microbiomes. However, Hannah Point, at Livingston Island, has a greater abundance of antibiotic and biocide resistance/tolerance genes. The microbiome of Deception Island's non-impacted areas (Crater Lake and Fumarole Bay) showed resistance/tolerance genes almost entirely to heavy metals. Pb was found in higher concentrations in Whalers Bay soil in comparison to the other areas, indicating human contamination. The non-metric multidimensional scaling (NMDS) analysis revealed that Pb concentrations influenced resistome profiles in Whalers Bay soil. Despite the effect of Pb on the microbial communities of Whalers Bay, most heavy metal concentrations did not have a significant impact on resistome genes, suggesting that the volcanic soil heavy metal concentration of Deception Island has little biological influence.
Afficher plus [+] Moins [-]Systematic multi-omics reveals the overactivation of T cell receptor signaling in immune system following bisphenol A exposure
2022
Park, Yoo-Jin | Rahman, Md. Saidur | Pang, Won-Ki | Ryu, Do-Yeal | Jung, Min-Ji | Amjad, Shehreen | Kim, Jun-Mo | Pang, Myung-Geol
Bisphenol A (BPA) is pervasive in the environment, and exposure to BPA may increase the incidence of noncommunicable diseases like autoimmune diseases and cancer. Although BPA causes immunological problems at the cellular level, no system-level research has been conducted on this. Hence, in this study, we aimed to gain a better understanding of the biological response to BPA exposure and its association with immunological disorders. For that, we explored the transcriptome and the proteomic modifications at the systems and cellular levels following BPA exposure. Our integrated multi-omics data showed the alteration of the T cell receptor (TCR) signaling pathway at both levels. The proportion of enlarged T cells increased with upregulation of CD69, a surface marker of early T cell activation, even though the number of T cells reduced after BPA exposure. Additionally, on BPA exposure, the levels of pLCK and pSRC increased in T cells, while that of pLAT decreased. Following BPA exposure, we investigated cytokine profiles and discovered that chitinase 3 Like 1 and matrix metalloproteinase 9 were enriched in T cells. These results indicated that T cells were hyperactivated by CD69 stimulation, and phosphorylation of SRC accelerated on BPA exposure. Hence, alteration in the TCR signaling pathway during development and differentiation due to BPA exposure could lead to insufficient and hasty activation of TCR signaling in T cells, which could modify cytokine profiles, leading to increased environmental susceptibility to chronic inflammation or diseases, increasing the chance of autoimmune diseases and cancer. This study enhances our understanding of the effects of environmental perturbations on immunosuppression at molecular, cellular, and systematic levels following pubertal BPA exposure, and may help develop better predictive, preventative, and therapeutic techniques.
Afficher plus [+] Moins [-]Bioremediation of hazardous pollutants from agricultural soils: A sustainable approach for waste management towards urban sustainability
2022
Yaashikaa, P.R. | Kumar, P Senthil
Soil contamination is perhaps the most hazardous issue all over the world; these emerging pollutants ought to be treated to confirm the safety of our living environment. Fast industrialization and anthropogenic exercises have resulted in different ecological contamination and caused serious dangerous health effects to humans and animals. Agro wastes are exceptionally directed because of their high biodegradability. Effluents from the agro-industry are a possibly high environmental risk that requires suitable, low-cost, and extensive treatment. Soil treatment using a bioremediation method is considered an eco-accommodating and reasonable strategy for removing toxic pollutants from agricultural fields. The present review was led to survey bioremediation treatability of agro soil by microbes, decide functional consequences for microbial performance and assess potential systems to diminish over potentials. The presence of hazardous pollutants in agricultural soil and sources, and toxic health effects on humans has been addressed in this review. The present review emphasizes an outline of bioremediation for the effective removal of toxic contaminants in the agro field. In addition, factors influencing recent advancements in the bioremediation process have been discussed. The review further highlights the roles and mechanisms of micro-organisms in the bioremediation of agricultural fields.
Afficher plus [+] Moins [-]