Affiner votre recherche
Résultats 171-180 de 5,143
Risk assessment of microplastics in the ocean: Modelling approach and first conclusions
2018
Everaert, Gert | Van Cauwenberghe, Lisbeth | De Rijcke, Maarten | Koelmans, Albert A. | Mees, Jan | Vandegehuchte, Michiel | Janssen, Colin R.
We performed an environmental risk assessment for microplastics (<5 mm) in the marine environment by estimating the order of magnitude of the past, present and future concentrations based on global plastic production data. In 2100, from 9.6 to 48.8 particles m⁻³ are predicted to float around in the ocean, which is a 50-fold increase compared to the present-day concentrations. From a meta-analysis with effect data available in literature, we derived a safe concentration of 6650 buoyant particles m⁻³ below which adverse effects are not likely to occur. Our risk assessment (excluding the potential role of microplastics as chemical vectors) suggests that on average, no direct effects of free-floating microplastics in the marine environment are to be expected up to the year 2100. Yet, even today, the safe concentration can be exceeded in sites that are heavily polluted with buoyant microplastics. In the marine benthic compartment between 32 and 144 particles kg⁻¹ dry sediment are predicted to be present in the beach deposition zone. Despite the scarcity of effect data, we expect adverse ecological effects along the coast as of the second half of the 21st century. From then ambient concentrations will start to outrange the safe concentration of sedimented microplastics (i.e. 540 particles kg⁻¹ sediment). Additional ecotoxicological research in which marine species are chronically exposed to realistic environmental microplastic concentration series are urgently needed to verify our findings.
Afficher plus [+] Moins [-]Understanding context dependency in the response of forest understorey plant communities to nitrogen deposition
2018
Perring, Michael P. | Diekmann, Martin | Midolo, Gabriele | Schellenberger Costa, David | Bernhardt-Römermann, Markus | Otto, Johanna C.J. | Gilliam, Frank S. | Hedwall, Per-Ola | Nordin, Annika | Dirnböck, Thomas | Simkin, Samuel M. | Máliš, František | Blondeel, Haben | Brunet, Jörg | Chudomelová, Markéta | Durak, Tomasz | De Frenne, Pieter | Hédl, Radim | Kopecký, Martin | Landuyt, Dries | Li, Daijiang | Manning, Peter | Petřík, Petr | Reczyńska, Kamila | Schmidt, Wolfgang | Standovár, Tibor | Świerkosz, Krzysztof | Vild, Ondřej | Waller, Donald M. | Verheyen, Kris
Understorey communities can dominate forest plant diversity and strongly affect forest ecosystem structure and function. Understoreys often respond sensitively but inconsistently to drivers of ecological change, including nitrogen (N) deposition. Nitrogen deposition effects, reflected in the concept of critical loads, vary greatly not only among species and guilds, but also among forest types. Here, we characterize such context dependency as driven by differences in the amounts and forms of deposited N, cumulative deposition, the filtering of N by overstoreys, and available plant species pools. Nitrogen effects on understorey trajectories can also vary due to differences in surrounding landscape conditions; ambient browsing pressure; soils and geology; other environmental factors controlling plant growth; and, historical and current disturbance/management regimes. The number of these factors and their potentially complex interactions complicate our efforts to make simple predictions about how N deposition affects forest understoreys. We review the literature to examine evidence for context dependency in N deposition effects on forest understoreys. We also use data from 1814 European temperate forest plots to test the ability of multi-level models to characterize context-dependent understorey responses across sites that differ in levels of N deposition, community composition, local conditions and management history. This analysis demonstrated that historical management, and plot location on light and pH-fertility gradients, significantly affect how understorey communities respond to N deposition. We conclude that species' and communities' responses to N deposition, and thus the determination of critical loads, vary greatly depending on environmental contexts. This complicates our efforts to predict how N deposition will affect forest understoreys and thus how best to conserve and restore understorey biodiversity. To reduce uncertainty and incorporate context dependency in critical load setting, we should assemble data on underlying environmental conditions, conduct globally distributed field experiments, and analyse a wider range of habitat types.
Afficher plus [+] Moins [-]Source tagging modeling study of regional contributions to acid rain in summer over Liaoning Province, Northeastern China
2018
Gbaguidi, Alex E. | Wang, Zifa | Wang, Wei | Yang, Ting | Chen, Huan-Sheng
Strong acid rain was recently observed over Northeastern China, particularly in summer in Liaoning Province where alkaline dust largely neutralized acids in the past. This seems to be related to the regional transboundary pollution and poses new challenges in acid rain control scheme in China. In order to delve into the regional transport impact, and quantify its potential contributions to such an “eruption” of acid rain over Liaoning, this paper employs an online source tagging model in coupling with the Nested Air Quality Prediction Modeling System (NAQPMS). Validation of predictions shows the model capability in reproducing key meteorological and chemical features. Acid concentration over Liaoning is more pronounced in August (average of 0.087 mg/m³) with strong pollutant import from regional sources against significant depletion of basic species. Seasonal mean contributions from regional sources are assessed at both lower and upper boundary layers to elucidate the main pathways of the impact of regional sources on acid concentration over Liaoning. At the upper layer (1.2 km), regional sources contribute to acid concentration over Liaoning by 67%, mainly from Shandong (16%), Hebei (13%), Tianjin (11%) and Korean Peninsula (9%). Identified main city-receptors in Liaoning are Dandong, Dalian, Chaohu, Yingkou, Liaoyang, Jinfu, Shengyang, Panjin, Tieling, Benxi, Anshan and Fushun. At lower layer (120 m) where Liaoning local contribution is dominant (58%), regional sources account for 39% in acid concentration. However, inter-municipal acid exchanges are prominent at this layer and many cities in Liaoning are revealed as important sources of local acid production. Seasonal acid contribution average within 1.2 km-120 m attains 55%, suggesting dominance of vertical pollutant transport from regional sources towards lower boundary layer in Liaoning. As direct environmental implication, this study provides policy makers with a perspective of regulating the regional transboundary environmental impact assessment in China with application to acid rain control.
Afficher plus [+] Moins [-]Emission and transformation behavior of minerals and hazardous trace elements (HTEs) during coal combustion in a circulating fluidized bed boiler
2018
Fu, Biao | Liu, Guijian | Sun, Mei | Hower, James C. | Mian, Md Manik | Wu, Dun | Wang, Ruwei | Hu, Guangqing
Emission of hazardous trace elements (HTEs) from energy production is receiving much attention due to concerns about the toxicity to the ecosystem and human health. This study presented new field measurement data on the HTEs partitioning behavior and size-segregated elemental compositions of gaseous particular matter (PM) generated from a commercial circulating fluidized bed (CFB) power plant. Mineralogical and morphological characteristics of combustion ash and PM2.5 (particle diameter less than 2.5 μm) were determined by X-ray diffractometer (XRD) and scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM/EDS). Functional groups alteration during CFB combustion was characterized by Fourier transform infrared spectroscopy (FTIR). The presence of aliphatic hydrogen at 2910 cm−1 and 2847 cm−1 in the PM2.5 suggested that the aliphatic carbon-rich volatiles were absorbed on the fine particles with large surface area. Fine fly ash (PM2.5) occurred as irregular glass particles or/and as unburned carbon. The typical irregular particles were mainly composed of Al-Si-Ca or Al-Si-Fe phases. The enrichment behavior of HTEs was determined for the airborne size-segregated particular matter. Elemental occurrences, combustion temperature, unburnt carbon, and limestone additives during CFB combustion were critical in the transformation behavior of HTEs. The total potentially mobile pollutants that exit the CFB power plant every year were estimated as follows: 0.22 tons of Cr, 0.12 tons of Co, 0.73 tons of Ni, 0.04 tons of As, 0.07 tons of Se, 3.95 kg of Cd, and 3.34 kg of Sb.
Afficher plus [+] Moins [-]Environmental and lifestyle factors affecting exposure to polycyclic aromatic hydrocarbons in the general population in a Middle Eastern area
2018
Hoseini, Mohammad | Nabizadeh, Ramin | Delgado-Saborit, Juana Maria | Rafiee, Ata | Yaghmaeian, Kamyar | Parmy, Saeid | Faridi, Sasan | Hassanvand, Mohammad Sadegh | Yunesian, Masud | Naddafi, Kazem
The aim of this study was to investigate environmental and lifestyle factors affecting exposure to PAHs in the general population in a large city of the Middle East (Tehran) by measuring urinary monohydroxy polycyclic aromatic hydrocarbons (OH-PAHs) and establishing relationships between PAHs exposure and related factors. Urine samples were collected from 222 randomly chosen subjects who were living in the urban area of Tehran, Iran. Subjects were required to complete a detailed questionnaire aimed to document their personal and sociodemographic information, activities, cooking-related appliances, smoking history/exposure, and consumed foodstuff. Identification and quantification of six OH-PAHs was carried out using a gas chromatography with mass spectrometry (GC-MS). The geometric means for 1-OHP, 1-NAP, 2-NAP, 2-FLU, 9-FLU, and 9-PHE for whole population study were 310, 1220, 3070, 530, 330, and 130 ng/g creatinine, respectively. The two naphthalene metabolites contributed on average 77% of the total concentration of six measured OH-PAHs, followed by the 2-FLU, 1-OHP, 9-FLU, and 9-PHE. The most important predictors of urinary PAHs were consumption of grilled/barbecued foods, smoking, and exposure to environmental tobacco smoking. Water pipe smoking was linked to urinary OH-PAH metabolite in a dose-response function. Residential traffic was also related with OH-PAH metabolite concentrations. Other factors including gender, age, exposure to common house insecticides, open burning, and candle burning were found to be statistically associated with the urinary levels of some OH-PAHs. High exposure to PAHs among general population in Middle Eastern large cities and its associated health implications calls for public health measures to reduce PAHs exposure.
Afficher plus [+] Moins [-]Determination of the partition coefficient between dissolved organic carbon and seawater using differential equilibrium kinetics
2018
Kim, Du Yung | Kwon, Jung-Hwan
Because the freely dissolved fraction of highly hydrophobic organic chemicals is bioavailable, knowing the partition coefficient between dissolved organic carbon and water (KDOCw) is crucial to estimate the freely dissolved fraction from the total concentration. A kinetic method was developed to obtain KDOCw that required a shorter experimental time than equilibrium methods. The equilibrium partition coefficients of four polychlorinated biphenyls (PCBs) (2,4,4′-trichlorobiphenyl (PCB 28), 2,2′,3,5′-tetrachlorobiphenyl (PCB 44), 2,2′,4,5,5′-pentachlorobiphenyl (PCB 101), and 2,2′,4,4′,5,5′-hexachlorobiphenyl (PCB 153)) between dissolved organic carbon and seawater (KDOCsw) were determined using seawater samples from the Korean coast. The log KDOCsw values of PCB 28 were measured by equilibrating PCB 28, the least hydrophobic congener, with seawater samples, and the values ranged from 6.60 to 7.20. For the more hydrophobic PCBs (PCB 44, PCB 101, and PCB 153), kinetic experiments were conducted to determine the sorption rate constants (k2) and their log KDOCsw values were obtained by comparing their k2 with that of PCB 28. The calculated log KDOCsw values were 6.57–7.35 for PCB 44, 6.23–7.44 for PCB 101, and 6.35–7.73 for PCB 153. The validity of the proposed method was further confirmed using three less hydrophobic polycyclic aromatic hydrocarbons. This kinetic method shortened the experimental time to obtain the KDOCsw values of the more hydrophobic PCBs, which did not reach phase equilibrium.
Afficher plus [+] Moins [-]An optimized method for the analysis of cyclic and linear siloxanes and their distribution in surface and core sediments from industrialized bays in Korea
2018
Lee, Sang Yoon | Lee, Sunggyu | Choi, Minkyu | Kannan, Kurunthachalam | Moon, Hyo-Bang
Environmental contamination by siloxanes is a matter of concern due to their widespread consumption in personal care as well as industrial products and potential toxicity. Nevertheless, methods for simultaneous determination of cyclic and linear siloxanes in sediment are lacking. In this study, we developed an optimized analytical method to determine cyclic and linear siloxanes based on gas chromatography coupled to tandem mass spectrometry (GC-MS/MS). This method was applied to determine concentrations of 19 siloxane compounds in surface and core sediments from industrialized bays in Korea to assess contamination status, spatial distribution, and historical trends. Total concentrations of siloxanes ranged from 15.0 to 11730 (mean: 712) ng/g dry weight, which were similar to or higher than those reported in other countries. The highest concentrations of siloxanes were found in rivers/streams that discharge into coastal waters and bays close to industrial complexes, indicating that industrial activities are major sources of siloxane contamination. Cyclic siloxanes such as D5 and D6 were predominant in surface and core sediments. A significant correlation existed between the concentrations of cyclic and linear siloxanes, suggesting similar sources in the marine coastal environment. The historical record of cyclic siloxanes in core sediments revealed a clear increasing trend since the 1970s. This finding is consistent with the history of local industrialization and global production of siloxanes. This is the first study of historical trends in siloxanes in the coastal environment.
Afficher plus [+] Moins [-]Major threats of pollution and climate change to global coastal ecosystems and enhanced management for sustainability
2018
Lü, Yonglong | Yuan, Jingjing | Lu, Xiaotian | Su, Chao | Zhang, Yueqing | Wang, Chenchen | Cao, Xianghui | Li, Qifeng | Su, Jilan | Ittekkot, Venugopalan | Garbutt, Richard Angus | Bush, Simon | Fletcher, Stephen | Wagey, Tonny | Kachur, Anatolii | Sweijd, Neville
Coastal zone is of great importance in the provision of various valuable ecosystem services. However, it is also sensitive and vulnerable to environmental changes due to high human populations and interactions between the land and ocean. Major threats of pollution from over enrichment of nutrients, increasing metals and persistent organic pollutants (POPs), and climate change have led to severe ecological degradation in the coastal zone, while few studies have focused on the combined impacts of pollution and climate change on the coastal ecosystems at the global level. A global overview of nutrients, metals, POPs, and major environmental changes due to climate change and their impacts on coastal ecosystems was carried out in this study. Coasts of the Eastern Atlantic and Western Pacific were hotspots of concentrations of several pollutants, and mostly affected by warming climate. These hotspots shared the same features of large populations, heavy industry and (semi-) closed sea. Estimation of coastal ocean capital, integrated management of land-ocean interaction in the coastal zone, enhancement of integrated global observation system, and coastal ecosystem-based management can play effective roles in promoting sustainable management of coastal marine ecosystems. Enhanced management from the perspective of mitigating pollution and climate change was proposed.
Afficher plus [+] Moins [-]Evaluation of the toxic response induced by azoxystrobin in the non-target green alga Chlorella pyrenoidosa
2018
Lu, Tao | Zhu, Youchao | Chui, Kawai | Ke, Mingjing | Zhang, Meng | Tan, Chengxia | Fu, Zhengwei | Qian, Haifeng
The top-selling strobilurin, azoxystrobin (AZ), is a broad-spectrum fungicide that protects against many kinds of pathogenic fungi by preventing their ATP production. The extensive use of AZ can have negative consequences on non-target species and its effects and toxic mechanisms on algae are still poorly understood. In this work, Chlorella pyrenoidosa that had been grown in BG-11 medium was exposed to AZ (0.5–10 mg L⁻¹) for 10 d. The physiological and molecular responses of the algae to AZ treatment, including photosynthetic efficiency, lipid peroxidation level, antioxidant enzyme activities, as well as transcriptome-based analysis of gene expression, were examined to investigate the potential toxic mechanism. Results shows that the photosynthetic pigment (per cell) increased slightly after AZ treatments, indicating that the photosystem of C. pyrenoidosa may have been strengthened. Glutathione and ascorbate contents were increased, and antioxidant enzyme activities were induced to relieve oxidative damage (e.g., from lipid peroxidation) in algae after AZ treatment. Transcriptome-based analysis of gene expression combined with physiological verification suggested that the 5 mg L⁻¹ AZ treatment did not inhibit ATP generation in C. pyrenoidosa, but did significantly alter amino acid metabolism, especially in aspartate- and glutamine-related reactions. Moreover, perturbation of ascorbate synthesis, fat acid metabolism, and RNA translation was also observed, suggesting that AZ inhibits algal cell growth through multiple pathways. The identification of AZ-responsive genes in the eukaryotic alga C. pyrenoidosa provides new insight into AZ stress responses in a non-target organism.
Afficher plus [+] Moins [-]Microplastic and soil protists: A call for research
2018
Rillig, Matthias C. | Bonkowski, Michael
Microplastic is an emerging contaminant of concern in soils globally, probably gradually increasing in soil due to slow degradation. Few studies on microplastic effects on soil biota are available, and no study in a microplastic contamination context has specifically addressed soil protists. Soil protists, a phylogenetically and functionally diverse group of eukaryotic, unicellular soil organisms, are major consumers of bacteria in soils and are potentially important vehicles for the delivery of microplastics into the soil food chain. Here we build a case for focusing research on soil protists by drawing on data from previous, older studies of phagocytosis in protist taxa, which have long made use of polystyrene latex beads (microspheres). Various soil-borne taxa, including ciliates, flagellates and amoebae take up microplastic beads in the size range of a few micrometers. This included filter feeders as well as amoebae which engulf their prey. Discrimination in microplastic particle uptake depended on species, physiological state as well as particle size. Based on the results of the studies we review here, there is now a need to study microplastic effects in a pollution ecology context: this means considering a broad range of particle types under realistic conditions in the soil, and exploring longer-term effects on soil protist communities and functions.
Afficher plus [+] Moins [-]