Affiner votre recherche
Résultats 1701-1710 de 3,201
Polybrominated dibenzo-p-dioxins and dibenzofurans (PBDD/Fs) in e-waste plastic in Nigeria
2015
Sindiku, O. | Babayemi, J. O. | Tysklind, M. | Osibanjo, O. | Weber, R. | Watson, A. | Schlummer, M. | Lundstedt, S.
Plastics from cathode ray tube (CRT) casings were sampled in Nigeria and analysed for their polybrominated dibenzo-p-dioxin and dibenzofuran (PBDD/F) content. PBDD/Fs, consisting mainly of PBDFs, were detected in BFR containing plastic with a median (mean) concentration of 18,000 ng/g (41,000 ng/g). The PBDD/Fs levels were highest in samples containing PBDEs, but the levels of PBDFs were two orders of magnitude higher than the levels reported in the technical PBDE mixtures and where frequently exceeding 1000 μg/g of PBDE content. These higher levels are likely to arise from additional transformation of PBDEs during production, use, recycling, or storage, but the processes responsible were not identified in this study. PBDD/Fs in CRT casings containing1,2-bistribromophenoxyethane (TBPE) were dominated by tetrabrominated dibenzo-p-dioxin (TBDDs) with concentrations around 10 μg/g of the TBPE content. The PBDD/Fs in CRT casings containing tetrabromobisphenol A (TBBPA) were found at concentrations around 0.1 μg/g of TBBPA levels. Casings treated with TBPE or TBBPA often contained PBDEs (and PBDF) as impurities—probably originating from recycled e-waste plastics. It was estimated that the 237,000 t of CRT casings stockpiled in Nigeria contain between 2 and 8 t of PBDD/Fs. The total PBDD/F contamination in polymers arising from total historic PBDE production/use is estimated in the order of 1000 t. TEQ values of CRT samples frequently exceeded the Basel Convention’s provisional low POPs content of 15 ng TEQ/g. Due to the significant risks to health associated with PBDD/Fs, more detailed studies on the exposure routes from PBDD/Fs in stockpiles are needed.
Afficher plus [+] Moins [-]Metals other than uranium affected microbial community composition in a historical uranium-mining site
2015
Sitte, Jana | Löffler, Sylvia | Burkhardt, Eva-Maria | Goldfarb, Katherine C. | Büchel, Georg | Hazen, Terry C. | Küsel, Kirsten
To understand the links between the long-term impact of uranium and other metals on microbial community composition, ground- and surface water-influenced soils varying greatly in uranium and metal concentrations were investigated at the former uranium-mining district in Ronneburg, Germany. A soil-based 16S PhyloChip approach revealed 2358 bacterial and 35 archaeal operational taxonomic units (OTU) within diverse phylogenetic groups with higher OTU numbers than at other uranium-contaminated sites, e.g., at Oak Ridge. Iron- and sulfate-reducing bacteria (FeRB and SRB), which have the potential to attenuate uranium and other metals by the enzymatic and/or abiotic reduction of metal ions, were found at all sites. Although soil concentrations of solid-phase uranium were high, ranging from 5 to 1569 μg·g (dry weight) soil⁻¹, redundancy analysis (RDA) and forward selection indicated that neither total nor bio-available uranium concentrations contributed significantly to the observed OTU distribution. Instead, microbial community composition appeared to be influenced more by redox potential. Bacterial communities were also influenced by bio-available manganese and total cobalt and cadmium concentrations. Bio-available cadmium impacted FeRB distribution while bio-available manganese and copper as well as solid-phase zinc concentrations in the soil affected SRB composition. Archaeal communities were influenced by the bio-available lead as well as total zinc and cobalt concentrations. These results suggest that (i) microbial richness was not impacted by heavy metals and radionuclides and that (ii) redox potential and secondary metal contaminants had the strongest effect on microbial community composition, as opposed to uranium, the primary source of contamination.
Afficher plus [+] Moins [-]A new approach to assess the chemical composition of powder deposits damaging the stone surfaces of historical monuments
2015
Fermo, Paola | Turrion, Raquel Gonzalez | Rosa, Mário | Omegna, Alessandra
The issue of conservation of the monumental heritage worldwide is mainly related to atmospheric pollution that causes the degradation of stone surfaces. The powder deposits present on the stone monuments reflect the composition of the aerosol particulate matter (PM) to which the surfaces are exposed, so the chemical characterization of the outermost damaged layers is necessary in order to adopt mitigation measurements to reduce PM emissions. In the present paper, a new analytical approach is proposed to investigate the chemical composition of powder deposits present on Angera stone, a dolomitic rock used in the Richini courtyard, a masterpiece of Lombard Baroque and placed in Milan. Inorganic and organic components present in these deposits have been analyzed by IC (ion chromatography) and a new approach mainly bases on thermal analyses, respectively. Gypsum is the main inorganic constituent indicating a composition similar to that of black crusts, hard black patina covering the degraded building surfaces. Ammonium nitrate present in the powder is able to react with the stone substrate to form magnesium nitrate which can migrate into the porous stone. The carbonaceous fraction powder deposits (i.e. OC = Organic Carbon and EC = Elemental Carbon) have been quantified by a new simple thermal approach based on carbon hydrogen nitrogen (CHN) analysis. The presence of high concentration of EC confirms that the powder deposits are evolving to black crust. Low values of water-soluble organic carbon (WSOC, determined by total organic carbon—TOC), with respect to what is normally found in PM, may indicate a migration process of organic substances into the stone with a worsening of the conservation conditions. The presence of heavy metals of anthropogenic origin and acting as catalysts in the black crust formation process has been highlighted by SEM-EDS (electron microscopy coupled with an energy dispersive spectrometer) as well.
Afficher plus [+] Moins [-]Characterization of the precursors of trihalomethanes and haloacetic acids in the Yuqiao Reservoir in China
2015
Niu, Zhi-Guang | Wei, Xiao-Ting | Zhang, Ying
To identify the primary precursors of trihalomethanes and haloacetic acids in the Yuqiao Reservoir in China, dissolved organic matters in the source water were isolated and fractionated into five different fractions (with XAD resin), and both trihalomethane and haloacetic acid formation potentials in each fraction were analysed by liquid-liquid extraction and GC-ECD. The primary precursors of trihalomethanes and haloacetic acids were identified using the index of disinfection by-product formation potential and specific disinfection by-product formation potential. In addition, the relationship between the specific ultraviolet absorbance and the specific disinfection by-product formation potential was studied using correlation analysis. The results indicated that during the sampling period, the hydrophobic acids and hydrophilic matter are the primary organic fractions in the Yuqiao Reservoir, accounting for 27.6–40.9 % and 21.2–32.5%, respectively. Among the five fractions, the hydrophobic acids had the highest disinfection by-product formation potential and specific disinfection by-product formation potential, indicating that the hydrophobic acids were the primary precursors of the disinfection by-products in the Yuqiao Reservoir. A correlation analysis indicates that the specific ultraviolet absorbance had a moderately positive correlation with the specific disinfection by-product formation potential; therefore, the specific ultraviolet absorbance can be a reference index to analyse the ability of organic matter to generate disinfection by-products.
Afficher plus [+] Moins [-]Mercury distribution in sediment along urban–rural gradient around Shanghai (China): implication for pollution history
2015
Yang, Jing | Chen, Ling | Shi, Wei-Ling | Liu, Li-Zao | Li, Yue | Meng, Xiang-Zhou
The increasing levels of heavy metals in the environment generally related with the rapid industrialization and urbanization. Mercury (Hg) is a global toxin with wide concerns, and China gradually becomes the main producer, consumer, and emitter of Hg in the world. However, few historical data are available on the occurrence of Hg in Chinese urban areas. Here, we collected 35 lake surface sediment samples from 35 public parks and 1 sediment core in the Luxun Park in Shanghai, a hyper-urbanization city in China, to determine the spatial and vertical distributions of total mercury (THg) and methylmercury (MeHg) and to explore the Hg pollution history with the industrial development. Higher concentrations of Hg and MeHg and greater Hg enrichment were found in urban areas compared with suburban area with the following order: central urban core area > developed urban area > developing urban area > suburban area. The THg concentration in the sediment core showed an increasing trend from 1876 to 2000 and a decreasing trend from 2000 to 2012, coinciding with the process of industrialization and urbanization in Shanghai. However, THg fluxes unceasingly increased from 1876 to present probably attributed to coal consumption in the suburban area and transportation agglomeration in the central urban core area. Unlike THg, no significant variations for MeHg with time and the maximum value (0.17 μg/kg) appeared in 1947. The methylation ratio of MeHg to THg in the sediment is pretty low, and more studies are needed to further understand the fate of Hg in the environment.
Afficher plus [+] Moins [-]Efficient photocatalytic degradation of organic pollutants by magnetically recoverable nitrogen-doped TiO2 nanocomposite photocatalysts under visible light irradiation
2015
Hamzezadeh-Nakhjavani, Sahar | Tavakoli, Omid | Akhlaghi, Seyed Parham | Salehi, Zeinab | Esmailnejad-Ahranjani, Parvaneh | Arpanaei, Ayyoob
Preparation of novel nanocomposite particles (NCPs) with high visible-light-driven photocatalytic activity and possessing recovery potential after advanced oxidation process (AOP) is much desired. In this study, pure anatase phase titania (TiO₂) nanoparticles (NPs) as well as three types of NCPs including nitrogen-doped titania (TiO₂-N), titania-coated magnetic silica (Fe₃O₄ cluster@SiO₂@TiO₂ (FST)), and a novel magnetically recoverable TiO₂ nanocomposite photocatalyst containing nitrogen element (Fe₃O₄ cluster@SiO₂@TiO₂-N (FST-N)) were successfully synthesized via a sol–gel process. The photocatalysts were characterized by X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, field emission scanning electron microscopy (FE-SEM) with an energy-dispersive X-ray (EDX) spectroscopy analysis, X-ray photoelectron spectroscopy (XPS), UV–vis diffuse reflectance spectroscopy (DRS), and vibrating sample magnetometer (VSM). The photocatalytic activity of as-prepared samples was further investigated and compared with each other by degradation of phenol, as a model for the organic pollutants, in deionized (DI) water under visible light irradiation. The TiO₂-N (55 ± 1.5 %) and FST-N (46 ± 1.5 %) samples exhibited efficient photocatalytic activity in terms of phenol degradation under visible light irradiation, while undoped samples were almost inactive under same operating conditions. Moreover, the effects of key operational parameters, the optimum sample calcination temperature, and reusability of FST-N NCPs were evaluated. Under optimum conditions (calcination temperature of 400 °C and near-neutral reaction medium), the obtained results revealed efficient degradation of phenol for FST-N NCPs under visible light irradiation (46 ± 1.5 %), high yield magnetic separation and efficient reusability of FST-N NCPs (88.88 % of its initial value) over 10 times reuse.
Afficher plus [+] Moins [-]Photosynthesis light-independent reactions are sensitive biomarkers to monitor lead phytotoxicity in a Pb-tolerant Pisum sativum cultivar
2015
Rodríguez, Eleazar | da Conceição Santos, Maria | Azevedo, Raquel | Correia, Carlos | Moutinho-Pereira, José | Ferreira de Oliveira, José Miguel Pimenta | Dias, Maria Celeste
Lead (Pb) environmental contamination remains prevalent. Pisum sativum L. plants have been used in ecotoxicological studies, but some cultivars showed to tolerate and accumulate some levels of Pb, opening new perspectives to their use in phytoremediation approaches. However, the putative use of pea plants in phytoremediation requires reliable toxicity endpoints. Here, we evaluated the sensitivity of a large number of photosynthesis-related biomarkers in Pb-exposed pea plants. Plants (cv. “Corne de Bélier”) were exposed to Pb concentrations up to 1,000 mg kg⁻¹ soil during 28 days. The photosynthetic potential biomarkers that were analyzed included pigments, chlorophyll (Chl) a fluorescence, gas exchange, ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) activity, and carbohydrates. Flow cytometry (FCM) was also used to assess the morpho-functional status of chloroplasts. Finally, Pb-induced nutrient disorders were also evaluated. Net CO₂ assimilation rate (A) and RuBisCO activity decreased strongly in Pb-exposed plants. Plant dry mass (DM) accumulation, however, was only reduced in the higher Pb concentrations tested (500 and 1,000 mg kg⁻¹ soil). Pigment contents increased solely in plants exposed to the largest Pb concentration, and in addition, the parameters related to the light-dependent reactions of photosynthesis, F ᵥ/F ₘ and ΦPSII, were not affected by Pb exposure. In contrast to this, carbohydrates showed an overall tendency to increase in Pb-exposed plants. The morphological status of chloroplasts was affected by Pb exposure, with a general trend of volume decrease and granularity increase. These results point the endpoints related to the light-independent reactions of photosynthesis as more sensitive predictors of Pb-toxicity than the light-dependent reactions ones. Among the endpoints related to the light-independent photosynthesis reactions, RuBisCO activity and A were found to be the most sensitive. We discuss here the advantages of using these parameters as biomarkers for Pb toxicity in plants. Finally, we report that, despite showing physiological disorders, these cultivar plants survived and accumulated high doses of Pb, and their use in environmental/decontamination studies is open to debate.
Afficher plus [+] Moins [-]Ecotoxicological effects of salicylic acid in the freshwater fish Salmo trutta fario: antioxidant mechanisms and histological alterations
2015
Nunes, B. | Campos, J. C. | Gomes, R. | Braga, M. R. | Ramos, A. S. | Antunes, S. C. | Correia, A. T.
The presence of pharmaceutical drugs in aquatic ecosystems has been widely reported during the past years. Salicylic acid (SA) is mainly used in human medicine as an analgesic and antipyretic drug, being also active in preventing platelet aggregation. To study the ecotoxicological effects potentially elicited by SA in freshwater fish, brown trout individuals (Salmo trutta fario) were chronically exposed (28 days) to this drug, in order to evaluate the enzymatic and histological effects, in both gills and liver. A qualitative and semi-qualitative evaluation of the gills and liver was performed, and also a quantitative evaluation of various lamellar structures. Oxidative stress was quantified trough the determination of glutathione S-transferases (GSTs), glutathione reductase (GRed), total and selenium-dependent glutathione peroxidase (GPx) and Catalase (Cat) activities. Lipid peroxidative damage was also assessed by the quantification of thiobarbituric acid reactive substances (TBARS) in the liver. The here-obtained data showed the occurrence of oxidative stress, reflected by an increased activity of GPx and GRed in the liver; additionally, it was possible to observe non-specific histological changes in gills. The global significance of the entire set of results is discussed, giving emphasis to the ecological relevance of the responses.
Afficher plus [+] Moins [-]Potential toxic effects of aircraft de-icers and wastewater samples containing these compounds
2015
Mohiley, A. | Franzaring, J. | Calvo, O. C. | Fangmeier, A.
One of the major problems of airport operation is the impact of pollution caused by runoff waters. Runoff waters at an airport may contain high concentrations of different contaminants resulting from various activities of its operation. High quantities of aircraft de-icing/anti-icing fluids are used annually at airports worldwide. Aircraft de-icers and anti-icers may have negative environmental impacts, but their effects on aquatic organisms are virtually unknown. In order to address this issue, aircraft de-icers, pavement de-icers and wastewater samples were obtained from a regional airport. To evaluate the toxicity of wastewater samples and aircraft de-icing/anti-icing fluids (ADAFs), two bio-tests were performed: the Lemna growth inhibition test according to OECD guideline 221 and the luminescent bacteria test according to ISO guideline 11348-2. In the Lemna growth inhibition test, phytotoxicity was assessed using the endpoints frond number and frond area. The luminescent bacteria test involved the marine bacterium Vibrio fischeri. The estimates of effective concentrations (EC₅₀) values were determined using the free software R and the “drc” library. Aquatic plants and marine bacteria showed a higher sensitivity towards ADAFs than to wastewater samples. Experiments showed that aircraft de-icing/anti-icing fluids and wastewater samples were relatively more toxic towards Lemna gibba L. in comparison to V. fischeri.
Afficher plus [+] Moins [-]Responses of cytochrome P450, GST, and MXR in the mollusk Corbicula fluminea to the exposure to hospital wastewater effluents
2015
Bonnafé, Elsa | Sroda, Sophie | Budzinski, Hélène | Valière, Amélie | Pedelluc, Julie | Marty, Pierre | Geret, Florence
Pharmaceutical products are a major group of chemical compounds that are continuously released into the environment. The primary pathway of pharmaceuticals to the aquatic environment is the discharge of wastewater effluents. The Psychiatric hospital of Montpon (Dordogne, France) operates with its wastewater treatment plant. We first evaluated the presence and concentrations of 27 pharmaceuticals compounds in these effluents. All of the 27 compounds were detected in these wastewater effluents at concentrations ranging between 37,500 ng L⁻¹ (paracetamol) and 150 ng L⁻¹ (citalopram). The aim of the study was then to evaluate the exposure effects of the effluents on cytochrome P450, GST, and MXR responses in Corbicula fluminea gills and digestive glands. Experiments on clams exposed during 1, 3, 7 14, and 21 days revealed a strong and continuous overexpression of mdr1 (multidrug resistant 1) gene expression in gills and transitory variations in pi-gst expression and GST activity. EROD activity increased also transitory after 1 day in the digestive gland of exposed clams. These results indicated that in the effluent, some molecules have undergone metabolism of phase 1 and/or phase 2.
Afficher plus [+] Moins [-]