Affiner votre recherche
Résultats 1711-1720 de 7,288
Stress responses in captive Crocodylus moreletii associated with metal exposure Texte intégral
2022
Romero-Calderón, A.G. | Alvarez-Legorreta, T. | Rendón von Osten, J. | González-Jáuregui, M. | Cedeño-Vázquez, J.R.
Environmental pollution by metals has repercussions on wildlife health. It is known that some metals can have an influence on the neuroendocrine stress response, and at the same time, metals have pro-oxidant effects that can overwhelm the antioxidant system and cause oxidative stress. This study evaluates the association of metals with neuroendocrine stress activity and biomarkers of oxidative stress in 42 captive female Morelet's crocodiles (Crocodylus moreletii). We measured five metals of ecotoxicological importance (Hg, Cd, Pb, Cu and Zn), and three biomarkers of the oxidative stress response in the liver: glutathione (GSH) and glutathione disulfide (GSSG) as markers for antioxidant system and thiobarbituric acid reactive substances (TBARS) for oxidative damage. We also measured one biomarker of the neuroendocrine response to stress: corticosterone (B) in blood plasma. The mean ± SD concentrations of metals in the liver expressed in μg/g (dw) were: Cd: 0.004 ± 0.003, Hg: 0.014 ± 0.019, Cu: 0.017 ± 0.013, Zn: 0.043 ± 0.035, Pb: 0.16 ± 0.256. The mean ± SD of GSH was 0.42 ± 0.35 nmol/mg protein, the mean ± SD of GSSG was 0.24 ± 0.20 nmol/mg protein, the mean ± SD concentrations of TBARS were 0.36 ± 0.21 nmol/mg protein, and the mean ± SD of B was 393.57 ± 405.14 pg/mL. Hg presented a significant negative relationship with corticosterone. Cd had a negative relationship with both GSH and GSSG; meanwhile, Zn showed a negative relationship with TBARS levels, could be a protective element against hepatic oxidative damage. Finally, B had negative relationship with oxidative damage. The connection found between Hg and the neuroendocrine stress response, as well as the correlations of Cd and Zn with oxidative damage and antioxidant activity should be studied further, given their toxicological importance and implications for the conservation of C. moreletii and other crocodilians.
Afficher plus [+] Moins [-]Air pollution, white matter microstructure, and brain volumes: Periods of susceptibility from pregnancy to preadolescence Texte intégral
2022
Binter, Anne-Claire | Kusters, Michelle S.W. | van den Dries, Michiel A. | Alonso, Lucia | Lubczyńska, Małgorzata J. | Hoek, Gerard | White, Tonya | Iñiguez, Carmen | Tiemeier, Henning | Guxens, Mònica
Air pollution exposure during early-life is associated with altered brain development, but the precise periods of susceptibility are unknown. We aimed to investigate whether there are periods of susceptibility of air pollution between conception and preadolescence in relation to white matter microstructure and brain volumes at 9–12 years old. We used data of 3515 children from the Generation R Study, a population-based birth cohort from Rotterdam, the Netherlands (2002–2006). We estimated daily levels of nitrogen dioxide (NO2), and particulate matter (PM2.5 and PM2.5absorbance) at participants’ homes during pregnancy and childhood using land-use regression models. Diffusion tensor and structural brain images were obtained when children were 9–12 years of age, and we calculated fractional anisotropy and mean diffusivity, and several brain structure volumes. We performed distributed lag non-linear modeling adjusting for socioeconomic and lifestyle characteristics. We observed specific periods of susceptibility to all air pollutants from conception to age 5 years in association with lower fractional anisotropy and higher mean diffusivity that survived correction for multiple testing (e.g., −0.85 fractional anisotropy (95%CI -1.43; −0.27) per 5 μg/m³ increase in PM2.5 between conception and 4 years of age). We also observed certain periods of susceptibility to some air pollutants in relation to global brain and some subcortical brain volumes, but only the association between PM2.5 and putamen survived correction for multiple testing (172 mm³ (95%CI 57; 286) per 5 μg/m³ increase in PM2.5 between 4 months and 1.8 year of age). This study suggested that conception, pregnancy, infancy, toddlerhood, and early childhood seem to be susceptible periods to air pollution exposure for the development of white matter microstructure and the putamen volume. Longitudinal studies with repeated brain outcome measurements are needed for understanding the trajectories and the long-term effects of exposure to air pollution.
Afficher plus [+] Moins [-]A state-of-the-art review on capture and separation of hazardous hydrogen sulfide (H2S): Recent advances, challenges and outlook Texte intégral
2022
Chan, Yi Herng | Lock, Serene Sow Mun | Wong, Mee Kee | Yiin, Chung Loong | Loy, Adrian Chun Minh | Cheah, Kin Wai | Chai, Slyvester Yew Wang | Li, Claudia | How, Bing Shen | Chin, Bridgid Lai Fui | Chan, Zhe Phak | Lam, Su Shiung
Hydrogen sulfide (H₂S) is a flammable, corrosive and lethal gas even at low concentrations (ppm levels). Hence, the capture and removal of H₂S from various emitting sources (such as oil and gas processing facilities, natural emissions, sewage treatment plants, landfills and other industrial plants) is necessary to prevent and mitigate its adverse effects on human (causing respiratory failure and asphyxiation), environment (creating highly flammable and explosive environment), and facilities (resulting in corrosion of industrial equipment and pipelines). In this review, the state-of-the-art technologies for H₂S capture and removal are reviewed and discussed. In particular, the recent technologies for H₂S removal such as membrane, adsorption, absorption and membrane contactor are extensively reviewed. To date, adsorption using metal oxide-based sorbents is by far the most established technology in commercial scale for the fine removal of H₂S, while solvent absorption is also industrially matured for bulk removal of CO₂ and H₂S simultaneously. In addition, the strengths, limitations, technological gaps and way forward for each technology are also outlined. Furthermore, the comparison of established carbon capture technologies in simultaneous and selective removal of H₂S–CO₂ is also comprehensively discussed and presented. It was found that the existing carbon capture technologies are not adequate for the selective removal of H₂S from CO₂ due to their similar characteristics, and thus extensive research is still needed in this area.
Afficher plus [+] Moins [-]Effects of microplastic sorption on microbial degradation of halogenated polycyclic aromatic hydrocarbons in water Texte intégral
2022
Sun, Qing | Ren, Shu-Yan | Ni, Hong-Gang
Halogenated PAHs (HPAHs) are ubiquitous in the environment and have a toxicity similar to that of dioxin. Microplastics exist widely in the environment, and their sorption allows them to act as carriers of HPAHs, potentially changing the bioavailability of HPAHs. However, to the best of our knowledge related studies are limited. In this study, degrading bacteria of five HPAHs were cultivated from mangrove sediments. Among them, the Hyphomicrobium genus has good degradation ability on 9−BrAnt, 2−BrPhe and 2−ClPhe. The degradation process is in line with the first−order degradation kinetic characteristics. The kinetic equations of five kinds of HPAHs showed that the degradation half−lives are 0.65 days (2−BrFle), 0.79 days (9−ClPhe), 1.50 days (2−ClAnt), 5.94 days (9−BrPhe) and 14.1 days (9−BrAnt). The greater the number of benzene rings and the heavier the halogen substituents, the slower the degradation of HPAHs. The sorption of microplastics inhibited the biodegradation of HPAHs, and the degradation half−life of HPAHs will be extended from 0.65 to 14.1 days (the average is 4.59 days) to 1.71–9.93 days (average 5.40 days) for PA, 0.70–35.2 days (average 12.8 days) for PE, 6.02–28.2 (average 15.7 days) days for POM, and 4.60–24.0 (average 19.2 days) days for PP, which is mainly related to the partition coefficient between microplastics and water. This study provides a reference for reducing the uncertainty of the ecological risk assessment of HOCs in the aquatic environment.
Afficher plus [+] Moins [-]Investigation of organic carbon profiles and sources of coarse PM in Los Angeles Texte intégral
2022
Tohidi, Ramin | Altuwayjiri, Abdulmalik | Sioutas, Constantinos
Source apportionment analyses are essential tools to determine sources of ambient coarse particles (2.5 <dₚ < 10 μm) and to disentangle their association and contribution from other pollutants, particularly PM₂.₅ (<2.5 μm). A semi-continuous sampling campaign was conducted using two virtual impactors/concentrators to enhance coarse particulate matter concentrations coupled with an online thermal-optical EC/OC monitor to quantify coarse PM–bound organic carbon volatility fractions (OC₁-OC₄) in central Los Angeles during the winter, spring, and summer of 2021. The total OC and its volatility fraction concentrations, meteorological parameters (i.e., wind speeds and relative humidity), vehicle miles traveled (VMT), and gaseous source tracers (i.e., O₃ and NO₂) were used as inputs to positive matrix factorization (PMF) model. A 3-factor solution identified vehicular emissions (accounting for 46% in the cold phase and 26% in the warm phase of total coarse OC concentrations), secondary organic carbon (27% and 37%), and re-suspended dust (27% and 37%) as the primary organic carbon sources of coarse PM. The re-suspended dust factor showed a higher contribution of more volatile organic carbons (i.e., OC₁ up to 77%) due to their re-distribution on dust particles, whereas the SOA factor was the dominant contributor to less volatile organic aerosols (i.e., OC₄ up to 54%), which are the product of reactions at high relative humidity (RH). Our findings revealed that the total OC concentrations in the coarse size range were comparable with those of previous studies in the area, underscoring the challenges in curtailing coarse PM-bound OC sources and the necessity of developing effective emission control regulations on coarse PM. The results from the current study provide insights into the seasonal and temporal variation of total OC and its volatility fractions in Los Angeles.
Afficher plus [+] Moins [-]Nitrous oxide emission in altered nitrogen cycle and implications for climate change Texte intégral
2022
Aryal, Babita | Gurung, Roshni | Camargo, Aline F. | Fongaro, Gislaine | Treichel, Helen | Mainali, Bandita | Angove, Michael J. | Ngo, Huu Hao | Guo, Wenshan | Puadel, Shukra Raj
Natural processes and human activities play a crucial role in changing the nitrogen cycle and increasing nitrous oxide (N₂O) emissions, which are accelerating at an unprecedented rate. N₂O has serious global warming potential (GWP), about 310 times higher than that of carbon dioxide. The food production, transportation, and energy required to sustain a world population of seven billion have required dramatic increases in the consumption of synthetic nitrogen (N) fertilizers and fossil fuels, leading to increased N₂O in air and water. These changes have radically disturbed the nitrogen cycle and reactive nitrogen species, such as nitrous oxide (N₂O), and have impacted the climatic system. Yet, systematic and comprehensive studies on various underlying processes and parameters in the altered nitrogen cycle, and their implications for the climatic system are still lacking. This paper reviews how the nitrogen cycle has been disturbed and altered by anthropogenic activities, with a central focus on potential pathways of N₂O generation. The authors also estimate the N₂O–N emission mainly due to anthropogenic activities will be around 8.316 Tg N₂O–N yr⁻¹ in 2050. In order to minimize and tackle the N₂O emissions and its consequences on the global ecosystem and climate change, holistic mitigation strategies and diverse adaptations, policy reforms, and public awareness are suggested as vital considerations. This study concludes that rapidly increasing anthropogenic perturbations, the identification of new microbial communities, and their role in mediating biogeochemical processes now shape the modern nitrogen cycle.
Afficher plus [+] Moins [-]Impact of brominated flame retardants on lipid metabolism: An in vitro approach Texte intégral
2022
Maia, Maria Luz | Sousa, Sara | Pestana, Diogo | Faria, Ana | Teixeira, Diana | Delerue-Matos, Cristina | Domingues, Valentina Fernandes | Calhau, Conceição
Brominated flame retardants (BFRs) are chemicals employed to lower the flammability of several objects. These endocrine disruptor chemicals are lipophilic and persistent in the environment. Due to these characteristics some have been restricted or banned by the European Union, and replaced by several new chemicals, the novel BFRs (NBFRs). BFRs are widely detected in human samples, such as adipose tissue and some were linked with altered thyroid hormone levels, liver toxicity, diabetes and metabolic syndrome in humans. However, the disturbance in lipid metabolism caused by BFRs with emphases to NBFRs remains poorly understood. In this study, we used a pre-adipocyte (3T3-L1) cell line and a hepatocyte (HepG2) cell line to investigate the possible lipid metabolism disruption caused by four BFRs: hexabromobenzene (HBB), pentabromotoluene (PBT), 2-ethylhexyl-2,3,4,5-tetrabromobenzoate (TBB) and hexabromocyclododecane (HBCD). For that purpose, proliferation and Oil Red O assays, as well as, medium fatty acids profile evaluation using Gas chromatography and RNA extraction for quantitative RT-PCR assays were performed. We detected a significant reduction in the proliferation of preadipocytes and an increased lipid accumulation during differentiation caused by HBB. This BFR also lead to a significant increased expression of IL-1β and decreased expression of PGC-1α and adiponectin. Nevertheless, PBT, TBB and HBCD show to increase lipid accumulation in hepatocytes. PBT also display a significant increase of PPARγ gene expression. Lipid accumulation in the cells can occur by diverse mechanisms depending on the BFR. These results highlight the importance of endocrine disruptor compounds in obesity etiopathogeny.
Afficher plus [+] Moins [-]Assessment of elevated CO2 concentrations and heat stress episodes in soybean cultivars growing in heavy metal polluted soils: Crop nutritional quality and food safety Texte intégral
2022
Blanco, Andrés | Högy, Petra | Zikeli, Sabine | Pignata, María L. | Rodriguez, Judith H.
Assessment of elevated CO2 concentrations and heat stress episodes in soybean cultivars growing in heavy metal polluted soils: Crop nutritional quality and food safety Texte intégral
2022
Blanco, Andrés | Högy, Petra | Zikeli, Sabine | Pignata, María L. | Rodriguez, Judith H.
The present study evaluated the interactive effects of global change and heavy metals on the growth and development of three soybean [Glycine max (L.) Merrill] cultivars and the consequences on yield and food safety. Soybean cultivars (Alim 3.14 from Argentina, and ES Mentor and Sigalia, from Germany) were grown until maturity in heavy metals polluted soils from the Rhine Valley, Germany, at two CO₂ concentrations (400 and 550 ppm) and heat stress (HS) episodes (9 days with 10 °C higher than maximum regular temperature) during the critical growth period in controlled environmental chambers. Different morpho-physiological parameters, heavy metal concentration in aerial organs, seed quality parameters, and toxicological index were recorded. The results showed that no morphological differences were observed related to CO₂. Moreover, Alim 3.14 showed the highest yield under control conditions, but it was more sensitive to climatic conditions than the German cultivars, especially to heat stress which strongly reduces the biomass of the fruits. Heavy metals concentration in soil exceeds the legislation limits for agricultural soils for Cd and Pb, with 1.6 and 487 mg kg⁻¹ respectively. In all cultivars, soybeans accumulated Cd in its aerial organs, and it could be translocated to fruits. Cd concentration in seeds ranged between 0.6 and 2.4 mg kg⁻¹, which exceed legislation limits and with toxicological risk to potential Chinese consumers. Pb levels were lower than Cd in seeds (0.03–0.17 mg kg⁻¹), and the accumulation were concentrated in the vegetative organs, with 93% of the Pb incorporated. Moreover, pods accumulated 11 times more Pb than seeds, which suggests that they act as a barrier to the passage of Pb to their offspring. These results evidence that soybean can easily translocate Cd, but not Pb, to reproductive organs. No regular patterns were observed in relation to climatic influence on heavy metal uptake.
Afficher plus [+] Moins [-]Assessment of elevated CO2 concentrations and heat stress episodes in soybean cultivars growing in heavy metal polluted soils: Crop nutritional quality and food safety Texte intégral
2022
Blanco, Andrés | Högy, Petra | Zikeli, Sabine | Pignata, Maria Luisa | Rodriguez, Judith Hebelen
The present study evaluated the interactive effects of global change and heavy metals on the growth and development of three soybean [Glycine max (L.) Merrill] cultivars and the consequences on yield and food safety. Soybean cultivars (Alim 3.14 from Argentina, and ES Mentor and Sigalia, from Germany) were grown until maturity in heavy metals polluted soils from the Rhine Valley, Germany, at two CO2 concentrations (400 and 550 ppm) and heat stress (HS) episodes (9 days with 10 °C higher than maximum regular temperature) during the critical growth period in controlled environmental chambers. Different morpho-physiological parameters, heavy metal concentration in aerial organs, seed quality parameters, and toxicological index were recorded. The results showed that no morphological differences were observed related to CO2. Moreover, Alim 3.14 showed the highest yield under control conditions, but it was more sensitive to climatic conditions than the German cultivars, especially to heat stress which strongly reduces the biomass of the fruits. Heavy metals concentration in soil exceeds the legislation limits for agricultural soils for Cd and Pb, with 1.6 and 487 mg kg−1 respectively. In all cultivars, soybeans accumulated Cd in its aerial organs, and it could be translocated to fruits. Cd concentration in seeds ranged between 0.6 and 2.4 mg kg−1, which exceed legislation limits and with toxicological risk to potential Chinese consumers. Pb levels were lower than Cd in seeds (0.03–0.17 mg kg−1), and the accumulation were concentrated in the vegetative organs, with 93% of the Pb incorporated. Moreover, pods accumulated 11 times more Pb than seeds, which suggests that they act as a barrier to the passage of Pb to their offspring. These results evidence that soybean can easily translocate Cd, but not Pb, to reproductive organs. No regular patterns were observed in relation to climatic influence on heavy metal uptake. | Fil: Blanco, Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto Multidisciplinario de Biología Vegetal. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto Multidisciplinario de Biología Vegetal; Argentina | Fil: Högy, Petra. Universidad de Hohenheim. Instituto de Paisaje y Ecología Vegetal; Alemania | Fil: Zikeli, Sabine. Universidad de Hohenheim. Instituto de Paisaje y Ecología Vegetal; Alemania | Fil: Pignata, Maria Luisa. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto Multidisciplinario de Biología Vegetal. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto Multidisciplinario de Biología Vegetal; Argentina | Fil: Rodriguez, Judith Hebelen. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto Multidisciplinario de Biología Vegetal. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto Multidisciplinario de Biología Vegetal; Argentina
Afficher plus [+] Moins [-]Long-term exposure to environmental levels of phenanthrene induces emaciation-thirst disease-like syndromes in female mice Texte intégral
2022
Fang, Lu | Ou, Kunlin | Huang, Jie | Zhang, Shenli | Zhang, Ying | Zhao, Hezhen | Chen, Meng | Wang, Chonggang
Phenanthrene (Phe) is a polycyclic aromatic hydrocarbon widely present in foods and drinking water. To explore the detrimental effects of Phe on body metabolism, female Kunming mice were treated with Phe in drinking water at concentrations of 0.05, 0.5 and 5 ng/mL. After exposure for 270 d, the animals exhibited dose-dependent reduced body weight and increased water consumption. The dose-dependent accumulation of Phe in the brain decreased hypothalamic neuron numbers, upregulated hypothalamic expression of anaplastic lymphoma kinase, elevated norepinephrine levels in white adipose tissue (WAT) and further activated lipolysis in WAT, leading to a reduction in fat mass. Brown adipose tissue formation was reduced, accompanied by the inhibition of the bone morphogenetic protein signaling pathway. A simultaneous reduced serum levels of antidiuretic hormone (arginine vasopressin) might be one of the reasons for increased water consumption. The present results indicate an environmental etiology and prevention way for the development of emaciation-thirst disease.
Afficher plus [+] Moins [-]An amphibian high fat diet model confirms that endocrine disruptors can induce a metabolic syndrome in wild green frogs (Pelophylax spp. complex) Texte intégral
2022
Veyrenc, Sylvie | Regnault, Christophe | Sroda, Sophie | Raveton, Muriel | Reynaud, Stéphane
A pre-diabetes syndrome induced by endocrine disruptors (ED) was recently demonstrated in the model amphibian Silurana (Xenopus) tropicalis and was suggested to be a potential cause of amphibian population decline. However, such effects have not been found in wild type frogs exposed to ED and the capacity of amphibians to physiologically develop diabetes under natural conditions has not been confirmed. This study showed that a high fat diet (HFD) model displaying the important characteristics of mammal HFD models including glucose intolerance, insulin resistance and nonalcoholic fatty liver disease (NAFLD) can be developed with green frogs (Pelophylax spp.). Wild green frogs exposed to 10 μg L⁻¹ benzo [a]pyrene (BaP) for 18 h also displayed several characteristics of the pre-diabetes phenotype previously observed in Xenopus including glucose intolerance, gluconeogenesis activation and insulin resistance. The study results confirmed that metabolic disorders induced by ED in wild green frogs are typical of the pre-diabetes phenotype and could serve as a starting point for field studies to determine the role of ED in the decline of amphibian populations. From an environmental perspective, the response of wild green frogs to different ED (10 μg L⁻¹) suggests that a simple glucose-tolerance test could be used on wild anurans to identify bodies of water polluted with metabolic disruptors that could affect species fitness.
Afficher plus [+] Moins [-]